scholarly journals The complexity of eye-hand coordination: a perspective on cortico-cerebellar cooperation

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
John-Ross Rizzo ◽  
Mahya Beheshti ◽  
Tahereh Naeimi ◽  
Farnia Feiz ◽  
Girish Fatterpekar ◽  
...  

Abstract Background Eye–hand coordination (EHC) is a sophisticated act that requires interconnected processes governing synchronization of ocular and manual motor systems. Precise, timely and skillful movements such as reaching for and grasping small objects depend on the acquisition of high-quality visual information about the environment and simultaneous eye and hand control. Multiple areas in the brainstem and cerebellum, as well as some frontal and parietal structures, have critical roles in the control of eye movements and their coordination with the head. Although both cortex and cerebellum contribute critical elements to normal eye-hand function, differences in these contributions suggest that there may be separable deficits following injury. Method As a preliminary assessment for this perspective, we compared eye and hand-movement control in a patient with cortical stroke relative to a patient with cerebellar stroke. Result We found the onset of eye and hand movements to be temporally decoupled, with significant decoupling variance in the patient with cerebellar stroke. In contrast, the patient with cortical stroke displayed increased hand spatial errors and less significant temporal decoupling variance. Increased decoupling variance in the patient with cerebellar stroke was primarily due to unstable timing of rapid eye movements, saccades. Conclusion These findings highlight a perspective in which facets of eye-hand dyscoordination are dependent on lesion location and may or may not cooperate to varying degrees. Broadly speaking, the results corroborate the general notion that the cerebellum is instrumental to the process of temporal prediction for eye and hand movements, while the cortex is instrumental to the process of spatial prediction, both of which are critical aspects of functional movement control.

2018 ◽  
Vol 119 (1) ◽  
pp. 221-234 ◽  
Author(s):  
Yuhui Li ◽  
Yong Wang ◽  
He Cui

As a vital skill in an evolving world, interception of moving objects relies on accurate prediction of target motion. In natural circumstances, active gaze shifts often accompany hand movements when exploring targets of interest, but how eye and hand movements are coordinated during manual interception and their dependence on visual prediction remain unclear. Here, we trained gaze-unrestrained monkeys to manually intercept targets appearing at random locations and circularly moving with random speeds. We found that well-trained animals were able to intercept the targets with adequate compensation for both sensory transmission and motor delays. Before interception, the animals' gaze followed the targets with adequate compensation for the sensory delay, but not for extra target displacement during the eye movements. Both hand and eye movements were modulated by target kinematics, and their reaction times were correlated. Moreover, retinal errors and reaching errors were correlated across different stages of reach execution. Our results reveal eye-hand coordination during manual interception, yet the eye and hand movements may show different levels of prediction based on the task context. NEW & NOTEWORTHY Here we studied the eye-hand coordination of monkeys during flexible manual interception of a moving target. Eye movements were untrained and not explicitly associated with reward. We found that the initial saccades toward the moving target adequately compensated for sensory transmission delays, but not for extra target displacement, whereas the reaching arm movements fully compensated for sensorimotor delays, suggesting that the mode of eye-hand coordination strongly depends on behavioral context.


2019 ◽  
Vol 121 (5) ◽  
pp. 1967-1976 ◽  
Author(s):  
Niels Gouirand ◽  
James Mathew ◽  
Eli Brenner ◽  
Frederic R. Danion

Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior. Although eye movements are known to assist hand movement control, how eye movements might contribute to the adaptation of hand movements remains largely unexplored. To determine to what extent eye movements contribute to visuomotor adaptation of hand tracking, participants were asked to track a visual target that followed an unpredictable trajectory with a cursor using a joystick. During blocks of trials, participants were either allowed to look wherever they liked or required to fixate a cross at the center of the screen. Eye movements were tracked to ensure gaze fixation as well as to examine free gaze behavior. The cursor initially responded normally to the joystick, but after several trials, the direction in which it responded was rotated by 90°. Although fixating the eyes had a detrimental influence on hand tracking performance, participants exhibited a rather similar time course of adaptation to rotated visual feedback in the gaze-fixed and gaze-free conditions. More importantly, there was extensive transfer of adaptation between the gaze-fixed and gaze-free conditions. We conclude that although eye movements are relevant for the online control of hand tracking, they do not play an important role in the visuomotor adaptation of such tracking. These results suggest that participants do not adapt by changing the mapping between eye and hand movements, but rather by changing the mapping between hand movements and the cursor’s motion independently of eye movements. NEW & NOTEWORTHY Eye movements assist hand movements in everyday activities, but their contribution to visuomotor adaptation remains largely unknown. We compared adaptation of hand tracking under free gaze and fixed gaze. Although our results confirm that following the target with the eyes increases the accuracy of hand movements, they unexpectedly demonstrate that gaze fixation does not hinder adaptation. These results suggest that eye movements have distinct contributions for online control and visuomotor adaptation of hand movements.


2011 ◽  
Vol 105 (2) ◽  
pp. 846-859 ◽  
Author(s):  
Lore Thaler ◽  
Melvyn A. Goodale

Studies that have investigated how sensory feedback about the moving hand is used to control hand movements have relied on paradigms such as pointing or reaching that require subjects to acquire target locations. In the context of these target-directed tasks, it has been found repeatedly that the human sensory-motor system relies heavily on visual feedback to control the ongoing movement. This finding has been formalized within the framework of statistical optimality according to which different sources of sensory feedback are combined such as to minimize variance in sensory information during movement control. Importantly, however, many hand movements that people perform every day are not target-directed, but based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing, or copying. Here we tested if visual feedback about the moving hand is used in the same way to control target-directed and allocentric hand movements. The results show that visual feedback is used significantly more to reduce movement scatter in the target-directed as compared with the allocentric movement task. Furthermore, we found that differences in the use of visual feedback between target-directed and allocentric hand movements cannot be explained based on differences in uncertainty about the movement goal. We conclude that the role played by visual feedback for movement control is fundamentally different for target-directed and allocentric movements. The results suggest that current computational and neural models of sensorimotor control that are based entirely on data derived from target-directed paradigms have to be modified to accommodate performance in the allocentric tasks used in our experiments. As a consequence, the results cast doubt on the idea that models of sensorimotor control developed exclusively from data obtained in target-directed paradigms are also valid in the context of allocentric tasks, such as drawing, copying, or imitative gesturing, that characterize much of human behavior.


Motor Control ◽  
2016 ◽  
Vol 20 (3) ◽  
pp. 316-336 ◽  
Author(s):  
Uta Sailer ◽  
Florian Güldenpfennig ◽  
Thomas Eggert

This study investigated the effect of hand movements on behavioral and electro-physiological parameters of saccade preparation. While event-related potentials were recorded in 17 subjects, they performed saccades to a visual target either together with a hand movement in the same direction, a hand movement in the opposite direction, a hand movement to a third, independent direction, or without any accompanying hand movements. Saccade latencies increased with any kind of accompanying hand movement. Both saccade and manual latencies were largest when both movements aimed at opposite directions. In contrast, saccade-related potentials indicating preparatory activity were mainly affected by hand movements in the same direction. The data suggest that concomitant hand movements interfere with saccade preparation, particularly when the two movements involve motor preparations that access the same visual stimulus. This indicates that saccade preparation is continually informed about hand movement preparation.


2016 ◽  
Vol 115 (5) ◽  
pp. 2470-2484 ◽  
Author(s):  
Atul Gopal ◽  
Aditya Murthy

Voluntary control has been extensively studied in the context of eye and hand movements made in isolation, yet little is known about the nature of control during eye-hand coordination. We probed this with a redirect task. Here subjects had to make reaching/pointing movements accompanied by coordinated eye movements but had to change their plans when the target occasionally changed its position during some trials. Using a race model framework, we found that separate effector-specific mechanisms may be recruited to control eye and hand movements when executed in isolation but when the same effectors are coordinated a unitary mechanism to control coordinated eye-hand movements is employed. Specifically, we found that performance curves were distinct for the eye and hand when these movements were executed in isolation but were comparable when they were executed together. Second, the time to switch motor plans, called the target step reaction time, was different in the eye-alone and hand-alone conditions but was similar in the coordinated condition under assumption of a ballistic stage of ∼40 ms, on average. Interestingly, the existence of this ballistic stage could predict the extent of eye-hand dissociations seen in individual subjects. Finally, when subjects were explicitly instructed to control specifically a single effector (eye or hand), redirecting one effector had a strong effect on the performance of the other effector. Taken together, these results suggest that a common control signal and a ballistic stage are recruited when coordinated eye-hand movement plans require alteration.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6038 ◽  
Author(s):  
Henry Railo ◽  
Henri Olkoniemi ◽  
Enni Eeronheimo ◽  
Oona Pääkkönen ◽  
Juho Joutsa ◽  
...  

Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N = 14), and age-matched healthy control participants (N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [123I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements.


2018 ◽  
Vol 11 (6) ◽  
Author(s):  
Damla Topalli ◽  
Nergiz Ercil Cagiltay

Endoscopic surgery procedures require specific skills, such as eye-hand coordination to be developed. Current education programs are facing with problems to provide appropriate skill improvement and assessment methods in this field. This study aims to propose objective metrics for hand-movement skills and assess eye-hand coordination. An experimental study is conducted with 15 surgical residents to test the newly proposed measures. Two computer-based both-handed endoscopic surgery practice scenarios are developed in a simulation environment to gather the participants’ eye-gaze data with the help of an eye tracker as well as the related hand movement data through haptic interfaces. Additionally, participants’ eye-hand coordination skills are analyzed. The results indicate higher correlations in the intermediates’ eye-hand movements compared to the novices. An increase in intermediates’ visual concentration leads to smoother hand movements. Similarly, the novices’ hand movements are shown to remain at a standstill. After the first round of practice, all participants’ eye-hand coordination skills are improved on the specific task targeted in this study. According to these results, it can be concluded that the proposed metrics can potentially provide some additional insights about trainees’ eye-hand coordination skills and help instructional system designers to better address training requirements.


2017 ◽  
Vol 118 (1) ◽  
pp. 404-415 ◽  
Author(s):  
Philipp Kreyenmeier ◽  
Jolande Fooken ◽  
Miriam Spering

In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object (“ball”) with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated “hit zone.” In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ken-ichi Morishige ◽  
Nobuo Hiroe ◽  
Masa-aki Sato ◽  
Mitsuo Kawato

AbstractAlthough humans can direct their attention to visual targets with or without eye movements, it remains unclear how different brain mechanisms control visual attention and eye movements together and/or separately. Here, we measured MEG and fMRI data during covert/overt visual pursuit tasks and estimated cortical currents using our previously developed extra-dipole, hierarchical Bayesian method. Then, we predicted the time series of target positions and velocities from the estimated cortical currents of each task using a sparse machine-learning algorithm. The predicted target positions/velocities had high temporal correlations with actual visual target kinetics. Additionally, we investigated the generalization ability of predictive models among three conditions: control, covert, and overt pursuit tasks. When training and testing data were the same tasks, the largest reconstructed accuracies were overt, followed by covert and control, in that order. When training and testing data were selected from different tasks, accuracies were in reverse order. These results are well explained by the assumption that predictive models consist of combinations of three computational brain functions: visual information-processing, maintenance of attention, and eye-movement control. Our results indicate that separate subsets of neurons in the same cortical regions control visual attention and eye movements differently.


2020 ◽  
Vol 124 (4) ◽  
pp. 1092-1102
Author(s):  
Alexander Goettker ◽  
Katja Fiehler ◽  
Dimitris Voudouris

A systematic investigation of contributions of different somatosensory modalities (proprioception, kinesthesia, tactile) for goal-directed movements is missing. Here we demonstrate that while eye movements are not affected by different types of somatosensory information, reach precision improves when two different types of information are available. Moreover, reach accuracy and gaze precision to unseen somatosensory targets improve when performing coordinated eye-hand movements, suggesting bidirectional contributions of efferent information in reach and eye movement control.


Sign in / Sign up

Export Citation Format

Share Document