scholarly journals Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment

Author(s):  
L. Lebea ◽  
H. M. Ngwangwa ◽  
D. Desai ◽  
F. Nemavhola

AbstractThe initial stability after implantology is paramount to the survival of the dental implant, and the surface roughness of the implant plays a vital role in this regard. The characterisation of surface topography is a complicated branch of metrology, with a huge range of parameters available. Each parameter contributes significantly towards the survival and mechanical properties of three-dimensional printed specimens. The purpose of this paper is to experimentally investigate the effect of surface roughness of three-dimensional printed dental implants and three-dimensional printed dogbone tensile samples under areal height parameters, amplitude parameters (average of ordinates), skewness parameters and mechanical properties. During the experiment, roughness values were analysed, and the results showed that the skewness parameter demonstrated a minimum value of 0.59%. The three-dimensional printed dental implant recorded the arithmetic mean deviation of the assessed profile with a 3.4-mm diameter at 43.23% and the three-dimensional printed dental implant with a 4.3-mm diameter at 26.18%. Samples with a complex geometry exhibited a higher roughness surface, which was the greatest difficulty of additive manufacturing when evaluating surface finish. The results show that when the ultimate tensile stress decreases from 968.35 to 955.25 MPa, the arithmetic mean deviation increases by 1.4%, and when ultimate tensile stress increases to 961.18 MPa, the arithmetic mean deviation increases by 0.6%. When the cycle decreases from 262,142 to 137,433, the arithmetic mean deviation shows that less than a 90.74% increase in the cycle is obtained. For the three-dimensional printed dental implants, the higher the surface roughness, the lower the mechanical properties, ultimately leading to decreased implant life and poor performance.

Author(s):  
Lebogang Lebea ◽  
Harry M Ngwangwa ◽  
Dawood Desai ◽  
Fuluphelo Nemavhola

The initial stability after implantology is paramount to the survival of the dental implant and the surface roughness of the implant plays a vital role in this regard. The characterisation of surface topography is a complicated branch of metrology, with a huge range of parameters available. Each parameter contributes significantly towards the survival and mechanical properties of 3D-printed specimens. The purpose of this paper is to experimentally investigate the effect of surface roughness of 3D-printed dental implants and 3D-printed dogbone tensile samples under areal height (Ra) parameters, amplitude parameters (average of ordinates), skewness (Rsk) parameters and mechanical properties. During the experiment, roughness values were analysed and the results showed that the skewness parameter demonstrated a minimum value of 0.596%. The 3D-printed dental implant recorded Ra with a 3.4 mm diameter at 43.23% and the 3D-printed dental implant with a 4.3 mm diameter at 26.18%. Samples with a complex geometry exhibited a higher roughness surface, which was the greatest difficulty of additive manufacturing when evaluating surface finish. The results show that when the ultimate tensile stress (UTS) decreases from 968.35 MPa to 955.25 MPa, Ra increases by 1.4% and when UTS increases to 961.18 MPa, Ra increases by 0.6%. When the cycle decreases from 262142 to 137433, Ra shows that less than a 90.74% increase in cycle is obtained. For 3D-printed dental implants, the higher the surface roughness, the lower the mechanical properties, ultimately leading to decreased implant life and poor performance.


2015 ◽  
Vol 732 ◽  
pp. 161-164 ◽  
Author(s):  
Jan Vesely ◽  
Lukas Horny ◽  
Hynek Chlup ◽  
Milos Beran ◽  
Milan Krajicek ◽  
...  

The effects of the polyvinyl alcohol (PVA) concentration on mechanical properties of hydrogels based on blends of native or denatured collagen / PVA were examined. Blends of PVA with collagen were obtained by mixing the solutions in different ratios, using glycerol as a plasticizer. The solutions were cast on polystyrene plates and the solvent was allowed to evaporate at room temperature. Uniaxial tensile tests were performed in order to obtain the initial modulus of elasticity (up to deformation 0.1), the ultimate tensile stress and the deformation at failure of the material in the water-saturated hydrogel form. It was found that the material was elastic and the addition of PVA helped to enhance both the ultimate tensile stress and modulus of elasticity of the films. Samples prepared from denaturated collagen showed the higher ultimate tensile stress and the deformation at failure in comparison with those prepared from native collagen. The results suggest that we could expect successful application of the collagen/PVA biomaterial for tissue engineering.


Author(s):  
Hamaid Mahmood KHAN

Selective laser sintering (SLS) is a process of fabrication of three-dimensional structures by fus- ing powder particles using a guided laser source. The uncertainty in the mechanical properties of the SLS parts fabricated at the same time and with the same process parameters can affect the repeatability of the SLS process. A vast difference in the mechanical properties of the concurrently processed parts can lower the production quality of the batch. Therefore, the param- eters are required to be design based on the most probable outcome of the desired properties. Weibull distribution is one such statistical-based probability distribution method to measure the likelihood of the occurrence of a value of any random variable falling within a particular range of values. Here, the Weibull distribution was used to measure the relative likelihood (90% probability) of the surface roughness and the compressive strength values of the SLS-built polyamide PA2200 components in the given sample space that was obtained from 20 random samples. The results show that the variance in the surface roughness (scan and built plane) and the compressive strength values were in the range of 6–7 μm and around 10 MPa, respectively. Moreover, the surface roughness of the two orthogonal planes with 90% reliability was measured at 14.81 μm (scan plane) and 12.15 μm (built plane). Similarly, the yield strength and the compressive strength with 90% reliability were found 25.87 MPa and 62.64 MPa, respectively.


Scanning ◽  
2013 ◽  
Vol 36 (1) ◽  
pp. 134-149 ◽  
Author(s):  
Yang Xia ◽  
Maxence Bigerelle ◽  
Julie Marteau ◽  
Pierre-Emmanuel Mazeran ◽  
Salima Bouvier ◽  
...  

2018 ◽  
Vol 224 ◽  
pp. 01070
Author(s):  
Darya Starodubtseva ◽  
Vinh Le Tri ◽  
Vladimir Koltsov

Shot peening is widely used in forming long panels and sheaths. Due to impact by shot on the processed surface, a specific microgeometry is formed, the characteristic feature of this microgeometry are the numerous dimples as the traces of shot impact with different diameters and depths. A presence of these dimples causes deterioration of the surface roughness parameters. Therefore, after shot peening the mandatory requirement is the implementation of surface grinding with flap wheels for partial removal of the dimples. The size of the assigned allowance for grinding depends on the quality requirements of the part surface. At the same time, the depths of the remaining dimples are determined by the part surface roughness requirements. After grinding, the new surface microgeometry is formed, as a combination of micro-roughness from previous types of processing and the remained dimples in result of shot peening. In this work the microgeometry formation of surface layer of the samples after shot peen forming and subsequent grinding with flap wheels was analysed. The parameters of surface roughness were measured by the method of three-dimensional optical scanning. In the measurement result, the mathematical model of the surface micro-profile formation was formulated, the analytical dependences of the position of the center plane and the arithmetic mean deviation of profile were obtained.


Author(s):  
A. Çalık ◽  
O. Dokuzlar ◽  
N. Uçar

Purpose: In this study, the effect of heat treatment on the microstructure and mechanical properties of 42CrMo4 steel were investigated. Design/methodology/approach: The samples were annealed at 860°C for 120 min. followed by oil quenching and then tempered at temperatures between 480 and 570°C for 120 min. The microstructure of untreated 42CrMo4 steel mainly consists of pearlite and ferrite whereas the microstructure was found to be as a martensitic structure with a quenching process. Findings: The results showed that there is an increase in yield stress, ultimate tensile stress, hardness and impact energy, while elongation decreases at the end of the quenching process. Conversely, yield stress, ultimate tensile stress and hardness decrease slightly with the increasing of tempering temperature, while elongation and impact energy increase. Research limitations/implications: Other types of steels can be heat treated in a wider temperature range and the results can be compared. Practical implications: It is a highly effective method for improving the mechanical properties of heat treatment materials. Originality/value: A relationship between the mechanical properties and the microstructure of materials can be developed. The heat treatment is an effective method for this process.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 337
Author(s):  
Zdravko Krivokapić ◽  
Radoslav Vučurević ◽  
Davorin Kramar ◽  
Jelena Šaković Jovanović

Given the application of a multiple regression and artificial neural networks (ANNs), this paper describes development of models for predicting surface roughness, linking an arithmetic mean deviation of a surface roughness to a torque as an input variable, in the process of drilling enhancement steel EN 42CrMo4, thermally treated to the hardness level of 28 HRC, using cruciform blade twist drills made of high speed steel with hardness level of 64–68 HRC. The model was developed using process parameters (nominal diameters of twist drills, speed, feed, and angle of installation of work pieces) as input variables varied at three levels by Taguchi design of experiment and measured experimental data for a torque and arithmetic mean deviation of a surface roughness for different values of flank wear of twist drills. The comparative analysis of the models results and the experimental data, acquired for the inputs at the moment when a wear span reaches a limit value corresponding to a moment of the drills blunting, demonstrates that the neural network model gives better results than the results obtained in the application of multiple linear and nonlinear regression models.


Sign in / Sign up

Export Citation Format

Share Document