scholarly journals A pilot study of the impact of an exercise intervention on brain structure, cognition, and psychosocial symptoms in individuals with relapsing-remitting multiple sclerosis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chantel D. Mayo ◽  
Laureen Harrison ◽  
Kristen Attwell-Pope ◽  
Lynneth Stuart-Hill ◽  
Jodie R. Gawryluk

Abstract Background Despite pharmacological treatment, many individuals with multiple sclerosis (MS) continue to experience symptoms and medication side effects. Exercise holds promise for MS, but changes in brain structure following exercise have not been thoroughly investigated, and important cognitive and psychosocial variables are rarely primary outcomes. The aim of this pilot study was to investigate whether a 12-week exercise intervention would improve white matter integrity in the brain, or cognition, symptoms of fatigue, and depressed mood for individuals with relapsing-remitting MS (RRMS). Method Thirteen participants completed 12 weeks of speeded walking. Baseline and post-intervention testing included 3T diffusion tensor imaging (DTI) to assess white matter and neuropsychological testing to assess cognition, fatigue, and mood. Image pre-processing and analyses were performed in functional magnetic resonance imaging of the Brain Software Library. Results Post-intervention, there were no significant changes in white matter compared to baseline. Post-intervention, individuals with RRMS performed significantly better on the Symbol Digit Modalities Test (SDMT), reported fewer perceived memory problems, and endorsed less fatigue. Performance was not significantly different on Trails or Digit Span, and there were no significant changes in reports of mood. Conclusion Although 12 weeks of speeded walking did not improve white matter integrity, exercise may hold promise for managing some symptoms of RRMS in the context of this study population.

2013 ◽  
Vol 20 (8) ◽  
pp. 1066-1073 ◽  
Author(s):  
Silvia Mangia ◽  
Adam F Carpenter ◽  
Andy E Tyan ◽  
Lynn E Eberly ◽  
Michael Garwood ◽  
...  

Background: Diffuse abnormalities are known to occur within the brain tissue of multiple sclerosis (MS) patients that is “normal appearing” on T1-weighted and T2-weighted magnetic resonance images. Objectives: With the goal of exploring the sensitivity of novel MRI parameters to detect such abnormalities, we implemented an inversion-prepared magnetization transfer (MT) protocol and adiabatic T1ρ and T2ρ rotating frame relaxation methods. Methods: Nine relapsing–remitting MS patients and seven healthy controls were recruited. Relaxation parameters were measured in a single slice just above the lateral ventricles and approximately parallel to the AC-PC line. Results: The MT ratio of regions encompassing the normal-appearing white matter (NAWM) was different in MS patients as compared with controls ( p = 0.043); however, the T1 measured during off-resonance irradiation (T1sat) was substantially more sensitive than the MT ratio for detecting differences between groups ( p = 0.0006). Adiabatic T1ρ was significantly prolonged in the NAWM of MS patents as compared to controls (by 6%, p = 0.026), while no differences were found among groups for T2ρ. No differences among groups were observed in the cortical gray matter for any relaxation parameter. Conclusions: The results suggest degenerative processes occurring in the NAWM of MS, likely not accompanied by significant abnormalities in iron content.


2016 ◽  
Vol 22 (12) ◽  
pp. NP12-NP12

Sbardella E, Tona F, Petsas N, et al. Functional connectivity changes and their relationship with clinical disability and white matter integrity in patients with relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal 2015; 21(13): 1681–1692. DOI: 10.1177/1352458514568826 The above article that appeared in the November 2015 issue of Multiple Sclerosis Journal contained incorrect affiliations for two of the authors. The correct affiliation for Patrizia Pantano is Department of Neurology and Psychiatry, University of Rome, Italy / IRCSS Neuromed, Italy. The correct affiliation for Nicola Filippini is FMRIB Centre, John Radcliffe Hospital, UK.


2021 ◽  
Author(s):  
Danka Jandric ◽  
Geoff JM Parker ◽  
Hamied Haroon ◽  
Valentina Tomassini ◽  
Nils Muhlert ◽  
...  

Understanding the brain changes underlying cognitive dysfunction is a key priority in multiple sclerosis to improve monitoring and treatment of this debilitating symptom. Functional connectivity network changes are associated with cognitive dysfunction, but it is less well understood how changes in normal appearing white matter relate to cognitive symptoms. If white matter tracts share a similar network structure it would be expected that tracts within a network are similarly affected by MS pathology. In the present study, we used a tractometry approach to explore patterns of variance in diffusion metrics across white matter (WM) tracts. We investigated whether separate networks, based on normal variation or pathology, appear, and how this relates to neuropsychological test performance across cognitive domains. A sample of 102 relapsing-remitting MS patients and 27 healthy controls underwent MRI and neuropsychological testing. Tractography was performed on diffusion MRI data to extract 40 WM tracts and microstructural measures were extracted from each tract. Principal component analysis (PCA) was used to decompose metrics from all tracts to assess the presence of any co-variance structure among the tracts. Similarly, PCA was applied to cognitive test scores to identify the main cognitive domains. Finally, we assessed the ability of tract components to predict test performance across cognitive domains. We found that a single component which captured pathology across all tracts explained the most variance and that there was little evidence for separate, smaller network patterns of pathology. WM tract components were weak, but significant, predictors of cognitive function in MS. These findings highlight the need to investigate the relationship between the normal appearing white matter and cognitive impairment further and on a more granular level, to improve the understanding of the network structure of the brain in MS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Beatrix Krause-Sorio ◽  
Prabha Siddarth ◽  
Michaela M. Milillo ◽  
Roza Vlasova ◽  
Linda Ercoli ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Afshin Derakhshani ◽  
Zahra Asadzadeh ◽  
Hossein Safarpour ◽  
Patrizia Leone ◽  
Mahdi Abdoli Shadbad ◽  
...  

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.


2012 ◽  
Vol 18 (11) ◽  
pp. 1577-1584 ◽  
Author(s):  
Lukas Filli ◽  
Louis Hofstetter ◽  
Pascal Kuster ◽  
Stefan Traud ◽  
Nicole Mueller-Lenke ◽  
...  

Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. MS lesions show a typical distribution pattern and primarily affect the white matter (WM) in the periventricular zone and in the centrum semiovale. Objective: To track lesion development during disease progression, we compared the spatiotemporal distribution patterns of lesions in relapsing–remitting MS (RRMS) and secondary progressive MS (SPMS). Methods: We used T1 and T2 weighted MR images of 209 RRMS and 62 SPMS patients acquired on two different 1.5 Tesla MR scanners in two clinical centers followed up for 25 (± 1.7) months. Both cross-sectional and longitudinal differences in lesion distribution between RRMS and SPMS patients were analyzed with lesion probability maps (LPMs) and permutation-based inference. Results: MS lesions clustered around the lateral ventricles and in the centrum semiovale. Cross-sectionally, compared to RRMS patients, the SPMS patients showed a significantly higher regional probability of T1 hypointense lesions ( p≤0.03) in the callosal body, the corticospinal tract, and other tracts adjacent to the lateral ventricles, but not of T2 lesions (peak probabilities were RRMS: T1 9%, T2 18%; SPMS: T1 21%, T2 27%). No longitudinal changes of regional T1 and T2 lesion volumes between baseline and follow-up scan were found. Conclusion: The results suggest a particular vulnerability to neurodegeneration during disease progression in a number of WM tracts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256155
Author(s):  
Intakhar Ahmad ◽  
Stig Wergeland ◽  
Eystein Oveland ◽  
Lars Bø

Incomplete remyelination is frequent in multiple sclerosis (MS)-lesions, but there is no established marker for recent remyelination. We investigated the role of the oligodendrocyte/myelin protein ermin in de- and remyelination in the cuprizone (CPZ) mouse model, and in MS. The density of ermin+ oligodendrocytes in the brain was significantly decreased after one week of CPZ exposure (p < 0.02). The relative proportion of ermin+ cells compared to cells positive for the late-stage oligodendrocyte marker Nogo-A increased at the onset of remyelination in the corpus callosum (p < 0.02). The density of ermin-positive cells increased in the corpus callosum during the CPZ-phase of extensive remyelination (p < 0.0001). In MS, the density of ermin+ cells was higher in remyelinated lesion areas compared to non-remyelinated areas both in white- (p < 0.0001) and grey matter (p < 0.0001) and compared to normal-appearing white matter (p < 0.001). Ermin immunopositive cells in MS-lesions were not immunopositive for the early-stage oligodendrocyte markers O4 and O1, but a subpopulation was immunopositive for Nogo-A. The data suggest a relatively higher proportion of ermin immunopositivity in oligodendrocytes compared to Nogo-A indicates recent or ongoing remyelination.


Sign in / Sign up

Export Citation Format

Share Document