scholarly journals Cardiac proteomics reveals the potential mechanism of microtubule associated protein 4 phosphorylation-induced mitochondrial dysfunction

2019 ◽  
Vol 7 ◽  
Author(s):  
Lingfei Li ◽  
Junhui Zhang ◽  
Qiong Zhang ◽  
Yuesheng Huang ◽  
Jiongyu Hu

Abstract Background Our previous work suggested that microtubule associated protein 4 (MAP4) phosphorylation led to mitochondrial dysfunction in MAP4 phosphorylation mutant mice with cardiomyopathy, but the detailed mechanism was still unknown. Thus, the aim of this study was to investigate the potential mechanism involved in mitochondrial dysfunction responsible for cardiomyopathy. Methods The present study was conducted to explore the potential mechanism underlying the mitochondrial dysfunction driven by MAP4 phosphorylation. Strain of mouse that mimicked constant MAP4 phosphorylation (S737 and S760) was generated. The isobaric tag for relative and absolute quantitation (iTRAQ) analysis was applied to the heart tissue. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) were all analyzed on the basis of differential expressed proteins (DEPs). Results Among the 72 cardiac DEPs detected between the two genotypes of mice, 12 were upregulated and 60 were downregulated. GO analysis showed the biological process, molecular function, and cellular component of DEPs, and KEGG enrichment analysis linked DEPs to 96 different biochemical pathways. In addition, the PPI network was also extended on the basis of DEPs as the seed proteins. Three proteins, including mitochondrial ubiquitin ligase activator of NF-κB 1, reduced form of nicotinamide adenine dinucleotide (NADH)-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial and growth arrest, and DNA-damage-inducible proteins-interacting protein 1, which play an important role in the regulation of mitochondrial function, may correlate with MAP4 phosphorylation-induced mitochondrial dysfunction. Western blot was used to validate the expression of the three proteins, which was consistent with iTRAQ experiments. Conclusions These findings revealed that the DEPs caused by MAP4 phosphorylation in heart tissue using iTRAQ technique and may provide clues to uncover the potential mechanism of MAP4 phosphorylation-induced mitochondrial dysfunction.

2020 ◽  
Author(s):  
Shengwen Duan ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
Zhiyuan Liu ◽  
...  

Abstract Background: Microbes play important roles in kanef-degumming. This study aims at identifying the key candidate microbes and proteins responsible for the degumming of kenaf bast (Hibiscus cannabinus). Kenaf bast was cut into pieces and immersed into microbia fermentation liquid collected from different sites. Fermentation liquid samples were collected at 0, 40, 110 and 150 h and then subjected to the 16S/18S rRNA sequencing analysis and isobaric tag for relative and absolute quantitation (iTRAQ) analysis. The microbial (bacterial and fungal) diversity and the differentially expressed proteins/peptides (DEPs) were identified.Results: With the prolonged degumming time, the weight loss rate increased, the bacterial diversity was decreased. [Weeksellaceae], Enterobacteriaceae and Moraxellaceae were rapidly increased at 0~40 h, and then decreased and were gradually replaced by Bacteroidaceae from 40 h to 150 h. Similarly, Chryseobacterium and Dysgonomonas were gradually increased at 0~110 h and then decreased; Acinetobacter and Lactococcus were increased at 0~40 h, followed by decrease. Bacteroides was the dominant genus at 150 h. Sequencing 18S rRNA-seq showed the gradually decreased Wallemia hederae and increased Codosiga hollandica during degumming. iTRAQ data analysis showed Rds1, and pyruvate kinase I was decreased and increased in the kanef-degumming, respectively. Other DEPs of ferredoxin I, superoxide dismutase and aconitatehydratase were identified to be related to the Glyoxylate and dicarboxylate metabolism (ko00630).Conclusions: Bacteria including Chryseobacterium, Dysgonomonas, Acinetobacter, Lactococcus and Bacteroidesand fungi like Wallemia hederae and Codosiga hollandica are key candidate microbes for kanef degumming.


2020 ◽  
Author(s):  
Yong-An Tan ◽  
Xu-Dong Zhao ◽  
Jing Zhao ◽  
Qin-Qin Ji ◽  
Liu-Bin Xiao ◽  
...  

AbstractThe polyphagous pest Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. The hormone 20-hydroxyecdysone (20E) regulates multiple events in insect development and physiology. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes whose expression is affected by PLC remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblot were carried out for comparing differentially expressed proteins (DEPs) in A. lucorum in response to 20E and the PLC inhibitor U73122, respectively. Totally 1624 DEPs were, respectively, found in the 20E/control, U73122/control, and 20E+U73122/control groups. Venn diagram analysis further revealed 8 DEPs that were shared among the three groups. Immunoblot validated these findings, which corroborated and highlighted the reliability of proteomics. KEGG enrichment analysis showed that the DEPs were included in diverse signaling pathways. The largest portion of DEPs among the three groups were categorized in metabolic pathways. In addition, DEPs among the three groups were also found to regulate the Ras-MAPK and PI3K-AKT pathways. This is the first time that iTRAQ was carried out to assess proteome alteration in A. lucorum nymphs in response to 20E and a PLC inhibitor. These findings provide novel insights into protein expression in A. lucorum in response to 20E, and a more comprehensive understanding of the function of PLC in 20E signal transduction.


2019 ◽  
Author(s):  
Shengwen Duan ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
Zhiyuan Liu ◽  
...  

Abstract Background: Microbia play important roles in kanef-degumming. This study is to identify the key candidate microbia and proteins responsible for the degumming of kenaf (Hibiscus cannabinus) bast. Kenaf bast was cut into species and immersed into microbial fermentation liquid collected from different sites. Fermentation liquid samples were collected at 0, 40, 110 and 150 h and the subjected to the 16S/18S rRNA sequencing analysis and isobaric tag for relative and absolute quantitation (iTRAQ) analysis. The microbial (bacterial and fungal) diversity and the differentially expressed proteins/peptides (DEPs) were identified. Results: With the prolonged degumming time, the weight loss rate increased, the bacterial diversity was decreased. [Weeksellaceae], Enterobacteriaceae and Moraxellaceae were rapidly increased at 0~40 h, and then decreased and were gradually replaced by Bacteroidaceae from 40 h to 150 h. Similarly, Chryseobacterium and Dysgonomonas were gradually increased at 0~110 h and then decreased; Acinetobacter and Lactococcus were increased at 0~40 h, followed by decrease. Bacteroides was the dominant genus at 150 h. 18S rRNA-seq showed the gradually decreased Wallemiaichthyophaga and increased Sclerotiniahomoeocarpa LT30 during degumming. iTRAQ data analysis showed Rds1, and pyruvate kinase I was decreased and increased in the kanef-degumming. Other DEPs of ferredoxin I, superoxide dismutase and aconitatehydratase were identified to be related to the Glyoxylate and dicarboxylate metabolism (ko00630). Conclusions: Bacteria including Chryseobacterium, Dysgonomonas, Acinetobacter, Lactococcus and Bacteroidesand fungi like Wallemia ichthyophaga are key candidate microbia for kanef degumming.


2022 ◽  
Author(s):  
Jiajie Lu ◽  
Rihong Huang ◽  
Yuecheng Peng ◽  
Haojian Wang ◽  
Zejia Feng ◽  
...  

Alzheimer’s disease (AD) is a form of neurodegenerative disease in the elderly with no cure at present. In a previous study, we found that the scaffold protein DISC1 is downregulated in the AD brains, and ectopic expression of DISC1 can delay the progression of AD by protecting synaptic plasticity and down-regulating BACE1. However, the underlying mechanisms remain not to be elucidated. In the present study, we compared the proteomes of normal and DISC1high AD cells expressing the amyloid precursor protein (APP) using isobaric tag for relative and absolute quantitation (iTRAQ) and mass spectrometry (MS). The differentially expressed proteins (DEPs) were identified, and the protein-protein interaction (PPI) network was constructed to identify the interacting partners of DISC1. Based on the interaction scores, NDE1, GRM3, PTGER3 and KATNA1 were identified as functionally or physically related to DISC1, and may therefore regulate AD development. The DEPs were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases with the DAVID software, and the eggNOG database was used to determine their evolutionary relationships. The DEPs were significantly enriched in microtubules and mitochondria-related pathways. Gene set enrichment analysis (GSEA) was performed to identify genes and pathways that are activated when DISC1 is overexpressed. Our findings provide novel insights into the regulatory mechanisms underlying DISC1 function in AD.


2011 ◽  
Vol 300 (6) ◽  
pp. C1280-C1290 ◽  
Author(s):  
Brian Glancy ◽  
Robert S. Balaban

Red and white muscles are faced with very different energetic demands. However, it is unclear whether relative mitochondrial protein expression is different between muscle types. Mitochondria from red and white porcine skeletal muscle were isolated with a Percoll gradient. Differences in protein composition were determined using blue native (BN)-PAGE, two-dimensional differential in gel electrophoresis (2D DIGE), optical spectroscopy, and isobaric tag for relative and absolute quantitation (iTRAQ). Complex IV and V activities were compared using BN-PAGE in-gel activity assays, and maximal mitochondrial respiration rates were assessed using pyruvate (P) + malate (M), glutamate (G) + M, and palmitoyl-carnitine (PC) + M. Without the Percoll step, major cytosolic protein contamination was noted for white mitochondria. Upon removal of contamination, very few protein differences were observed between red and white mitochondria. BN-PAGE showed no differences in the subunit composition of Complexes I–V or the activities of Complexes IV and V. iTRAQ analysis detected 358 mitochondrial proteins, 69 statistically different. Physiological significance may be lower: at a 25% difference, 48 proteins were detected; at 50%, 14 proteins were detected; and 3 proteins were detected at a 100%. Thus any changes could be argued to be physiologically modest. One area of difference was fat metabolism where four β-oxidation enzymes were ∼25% higher in red mitochondria. This was correlated with a 40% higher rate of PC+M oxidation in red mitochondria compared with white mitochondria with no differences in P+M and G+M oxidation. These data suggest that metabolic demand differences between red and white muscle fibers are primarily matched by the number of mitochondria and not by significant alterations in the mitochondria themselves.


2020 ◽  
Author(s):  
Shengwen Duan ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
Zhiyuan Liu ◽  
...  

Abstract Background: Microbial play important roles in kanef-degumming. This study aims at identifying the key candidate microbial and proteins responsible for the degumming of kenaf bast ( Hibiscus cannabinus ). Kenaf bast was cut into pieces and immersed into microbial fermentation liquid collected from different sites. Fermentation liquid samples were collected at 0, 40, 110 and 150 h and then subjected to the 16S/18S rRNA sequencing analysis and isobaric tag for relative and absolute quantitation (iTRAQ) analysis. The microbial (bacterial and fungal) diversity and the differentially expressed proteins/peptides (DEPs) were identified. Results: With the prolonged degumming time, the weight loss rate increased, the bacterial diversity was decreased. [Weeksellaceae], Enterobacteriaceae and Moraxellaceae were rapidly increased at 0~40 h, and then decreased and were gradually replaced by Bacteroidaceae from 40 h to 150 h. Similarly, Chryseobacterium and Dysgonomonas were gradually increased at 0~110 h and then decreased; Acinetobacter and Lactococcus were increased at 0~40 h, followed by decrease. Bacteroides was the dominant genus at 150 h. 18S rRNA-seq showed the gradually decreased Wallemia_hederae and increased Codosiga_hollandica during degumming. iTRAQ data analysis showed Rds1, and pyruvate kinase I was decreased and increased in the kanef-degumming, respectively. Other DEPs of ferredoxin I, superoxide dismutase and aconitatehydratase were identified to be related to the Glyoxylate and dicarboxylate metabolism (ko00630). Conclusions : Bacteria including Chryseobacterium , Dysgonomonas , Acinetobacter , Lactococcus and Bacteroides and fungi like Wallemia_hederae and Codosiga_hollandica are key candidate microbial for kanef degumming.


2019 ◽  
Author(s):  
Shengwen Duan ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
Zhiyuan Liu ◽  
...  

Abstract Background: Microbial play important roles in kanef-degumming. This study aims at identifying the key candidate microbial and proteins responsible for the degumming of kenaf bast ( Hibiscus cannabinus ). Kenaf bast was cut into pieces and immersed into microbial fermentation liquid collected from different sites. Fermentation liquid samples were collected at 0, 40, 110 and 150 h and then subjected to the 16S/18S rRNA sequencing analysis and isobaric tag for relative and absolute quantitation (iTRAQ) analysis. The microbial (bacterial and fungal) diversity and the differentially expressed proteins/peptides (DEPs) were identified. Results: With the prolonged degumming time, the weight loss rate increased, the bacterial diversity was decreased. [Weeksellaceae], Enterobacteriaceae and Moraxellaceae were rapidly increased at 0~40 h, and then decreased and were gradually replaced by Bacteroidaceae from 40 h to 150 h. Similarly, Chryseobacterium and Dysgonomonas were gradually increased at 0~110 h and then decreased; Acinetobacter and Lactococcus were increased at 0~40 h, followed by decrease. Bacteroides was the dominant genus at 150 h. 18S rRNA-seq showed the gradually decreased Wallemia_hederae and increased Codosiga_hollandica during degumming. iTRAQ data analysis showed Rds1, and pyruvate kinase I was decreased and increased in the kanef-degumming, respectively. Other DEPs of ferredoxin I, superoxide dismutase and aconitatehydratase were identified to be related to the Glyoxylate and dicarboxylate metabolism (ko00630). Conclusions : Bacteria including Chryseobacterium , Dysgonomonas , Acinetobacter , Lactococcus and Bacteroides and fungi like Wallemia_hederae and Codosiga_hollandica are key candidate microbial for kanef degumming.


2020 ◽  
Author(s):  
Shengwen Duan ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
Zhiyuan Liu ◽  
...  

Abstract Background: Microbial play important roles in kanef-degumming. This study aims at identifying the key candidate microbial and proteins responsible for the degumming of kenaf bast ( Hibiscus cannabinus ). Kenaf bast was cut into pieces and immersed into microbial fermentation liquid collected from different sites. Fermentation liquid samples were collected at 0, 40, 110 and 150 h and then subjected to the 16S/18S rRNA sequencing analysis and isobaric tag for relative and absolute quantitation (iTRAQ) analysis. The microbial (bacterial and fungal) diversity and the differentially expressed proteins/peptides (DEPs) were identified. Results: With the prolonged degumming time, the weight loss rate increased, the bacterial diversity was decreased. [Weeksellaceae], Enterobacteriaceae and Moraxellaceae were rapidly increased at 0~40 h, and then decreased and were gradually replaced by Bacteroidaceae from 40 h to 150 h. Similarly, Chryseobacterium and Dysgonomonas were gradually increased at 0~110 h and then decreased; Acinetobacter and Lactococcus were increased at 0~40 h, followed by decrease. Bacteroides was the dominant genus at 150 h. 18S rRNA-seq showed the gradually decreased Wallemia_hederae and increased Codosiga_hollandica during degumming. iTRAQ data analysis showed Rds1, and pyruvate kinase I was decreased and increased in the kanef-degumming, respectively. Other DEPs of ferredoxin I, superoxide dismutase and aconitatehydratase were identified to be related to the Glyoxylate and dicarboxylate metabolism (ko00630). Conclusions : Bacteria including Chryseobacterium , Dysgonomonas , Acinetobacter , Lactococcus and Bacteroides and fungi like Wallemia_hederae and Codosiga_hollandica are key candidate microbial for kanef degumming.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (linseed, Linum usitatissimum L.) is one of the most important oil crops., However, the increases in drought resulting from climate change have dramatically reduces linseed yield and quality, but very little is known about how linseed coordinates the expression of drought resistance gene in response to different level of drought stress (DS) on the genome-wide level. Results To explore the linseed transcriptional response of DS and repeated drought (RD) stress, we determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) under DS and RD stress at the seedling stage using single-molecule real-time sequencing and RNA-sequencing. Gene Ontology (GO) and reduce and visualize GO (REVIGO) enrichment analysis showed that upregulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance than those of NY-17 were under DS. In addition, 4436 linseed transcription factors were identified, and 1190 were responsive to stress treatments. Moreover, protein-protein interaction (PPI) network analysis showed that the proline biosynthesis pathway interacts with stress response genes through RAD50 (DNA repair protein 50) interacting protein 1 (RIN-1). Finally, proline biosynthesis and DNA repair structural gene expression patterns were verified by RT- PCR. Conclusions The drought tolerance of Z141 may be related to its upregulation of drought tolerance genes under DS. Proline may play an important role in linseed drought tolerance by maintaining cell osmotic and protecting DNA from ROS damage. In summary, this study provides a new perspective to understand the drought adaptability of linseed.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1874
Author(s):  
Suwei Chen ◽  
Sarah J. Annesley ◽  
Rasha A. F. Jasim ◽  
Paul R. Fisher

Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.


Sign in / Sign up

Export Citation Format

Share Document