scholarly journals Bioinformatics analysis of differentially expressed genes and identification of an miRNA–mRNA network associated with entorhinal cortex and hippocampus in Alzheimer’s disease

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Haoming Li ◽  
Linqing Zou ◽  
Jinhong Shi ◽  
Xiao Han

Abstract Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD.

2018 ◽  
Vol 17 (8) ◽  
pp. 608-617 ◽  
Author(s):  
Xiao-wen Jiang ◽  
Hong-yuan Lu ◽  
Ziru Xu ◽  
Tian-yi Liu ◽  
Qiong Wu ◽  
...  

Background: Epilepsy and Alzheimer's disease are common neuropathies with a complex pathogenesis. Both of them have some correlations in etiology, pathogenesis, pathological changes, clinical manifestations and treatment. Objective: This study investigated the key genes and molecular genetic mechanism in epilepsy and Alzheimer’s disease by bioinformatics analysis. Method: Two gene expression profiles were used to screen differentially expressed genes by GEO2R tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Then the protein-protein interaction (PPI) network was constructed by Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software which can be used to analyze modules with MCODE. Results: A total of 199 differentially expressed genes (DEGs) in the two groups. According to GO_BP analysis and KEGG pathway enrichment by DAVID, we found DEGs referring to several pathways significantly down-regulated in endocytosis, such as endocytosis, synaptic vesicle cycle, lysosome, cAMP signaling pathway, circadian entrainment, LTP, glutamatergic synapse and GABAergic synapse pathway. The regulator genes of the upstream pathway of circadian rhythms were obviously downgraded. Conclusion: Our research demonstrated that the regulatory genes of the upstream pathway of circadian rhythms were obviously downgraded. These biological pathways and DEGs or hub genes may contribute to revealing the molecular relationship between Alzheimer's disease and epilepsy.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1215
Author(s):  
Chunyan Liao ◽  
Jinying Xu ◽  
Yu Chen ◽  
Nancy Y. Ip

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.


2021 ◽  
Vol 22 (20) ◽  
pp. 11280
Author(s):  
Shan-Ju Yeh ◽  
Ming-Hsun Chung ◽  
Bor-Sen Chen

Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neurodegenerative disorder. Abnormal aggregations of intracellular neurofibrillary tangles (NFTs) and unusual accumulations of extracellular amyloid-β (Aβ) peptides are two important pathological features in AD brains. However, in spite of large-scale clinical studies and computational simulations, the molecular mechanisms of AD development and progression are still unclear. In this study, we divided all of the samples into two groups: early stage (Braak score I-–III) and later stage (Braak score IV–VI). By big database mining, the candidate genetic and epigenetic networks (GEN) have been constructed. In order to find out the real GENs for two stages of AD, we performed systems identification and system order detection scheme to prune false positives with the help of corresponding microarray data. Applying the principal network projection (PNP) method, core GENs were extracted from real GENs based on the projection values. By the annotation of KEGG pathway, we could obtain core pathways from core GENs and investigate pathogenetic mechanisms for the early and later stage of AD, respectively. Consequently, according to pathogenetic mechanisms, several potential biomarkers are identified as drug targets for multiple-molecule drug design in the treatment of AD.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
Ágoston Patthy ◽  
János Murai ◽  
János Hanics ◽  
Anna Pintér ◽  
Péter Zahola ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.


2018 ◽  
Vol 15 (10) ◽  
pp. 938-950 ◽  
Author(s):  
Martina Zverova ◽  
Eva Kitzlerova ◽  
Zdenek Fisar ◽  
Roman Jirak ◽  
Jana Hroudova ◽  
...  

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis and a common occurrence of comorbid diseases such as depression. It is accepted that the presence of the ε4 allele of the gene that encodes apolipoprotein E (APOE) is the strongest genetic risk factor for the development of sporadic AD. Melatonin, cortisol, homocysteine, and prolactin are presumed to be risk factors or biomarkers for stress- and age-related disorders. Objective: The interplay between the APOE genotype and plasma biomarkers was examined in patients with AD presenting with or without depression to contribute to understanding the interdependence of various molecular mechanisms in the pathophysiology of AD. Method: The APOE genotype and morning plasma melatonin, cortisol, homocysteine, and prolactin concentrations were measured in 85 patients with AD and 44 elderly controls. Results: A significant association between AD and the allele (ε4) or genotype (ε3/ε4 or ε4/ε4) frequencies of APOE was confirmed. Plasma homocysteine and cortisol levels were significantly increased in patients with AD compared to those in controls, independent of the presence of comorbid depressive symptoms or the severity of dementia. Significantly lower plasma melatonin concentration was found in patients with AD but not in controls, who were noncarriers of the APOE ε4 allele, regardless of the presence of depression or the severity of dementia in AD. Conclusion: Our findings indicate the existence of a little-known specific APOE-mediated mechanism that increases the plasma melatonin level in a subgroup of patients with AD who are carriers of the APOE ε4 allele.


2020 ◽  
Author(s):  
Yanjie Han ◽  
Xinxin Li ◽  
Jiliang Yan ◽  
Chunyan Ma ◽  
Xin Wang ◽  
...  

Abstract Background: Melanoma is the most deadly tumor in skin tumors and is prone to distant metastases. The incidence of melanoma has increased rapidly in the past few decades, and current trends indicate that this growth is continuing. This study was aimed to explore the molecular mechanisms of melanoma pathogenesis and discover underlying pathways and genes associated with melanoma.Methods: We used high-throughput expression data to study differential expression profiles of related genes in melanoma. The differentially expressed genes (DEGs) of melanoma in GSE15605, GSE46517, GSE7553 and the Cancer Genome Atlas (TCGA) datasets were analyzed. Differentially expressed genes (DEGs) were identified by paired t-test. Then the DEGs were performed cluster and principal component analyses and protein–protein interaction (PPI) network construction. After that, we analyzed the differential genes through bioinformatics and got hub genes. Finally, the expression of hub genes was confirmed in the TCGA databases and collected patient tissue samples.Results: Total 144 up-regulated DEGs and 16 down-regulated DEGs were identified. A total of 17 gene ontology analysis (GO) terms and 11 pathways were closely related to melanoma. Pathway of pathways in cancer was enriched in 8 DEGs, such as junction plakoglobin (JUP) and epidermal growth factor receptor (EGFR). In the PPI networks, 9 hub genes were obtained, such as loricrin (LOR), filaggrin (FLG), keratin 5 (KRT5), corneodesmosin (CDSN), desmoglein 1 (DSG1), desmoglein 3 (DSG3), keratin 1 (KRT1), involucrin (IVL) and EGFR. The pathway of pathways in cancer and its enriched DEGs may play important roles in the process of melanoma. The hub genes of DEGs may become promising melanoma candidate genes. Five key genes FLG, DSG1, DSG3, IVL and EGFR were identified in the TCGA database and melanoma tissues.Conclusions: The results suggested that FLG, DSG1, DSG3, IVL and EGFR might play important roles and potentially be valuable in the prognosis and treatment of melanoma.


Sign in / Sign up

Export Citation Format

Share Document