scholarly journals Cut wires: The Electrophysiology of Regenerated Tissue

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexis L. Lowe ◽  
Nitish V. Thakor

AbstractWhen nerves are damaged by trauma or disease, they are still capable of firing off electrical command signals that originate from the brain. Furthermore, those damaged nerves have an innate ability to partially regenerate, so they can heal from trauma and even reinnervate new muscle targets. For an amputee who has his/her damaged nerves surgically reconstructed, the electrical signals that are generated by the reinnervated muscle tissue can be sensed and interpreted with bioelectronics to control assistive devices or robotic prostheses. No two amputees will have identical physiologies because there are many surgical options for reconstructing residual limbs, which may in turn impact how well someone can interface with a robotic prosthesis later on. In this review, we aim to investigate what the literature has to say about different pathways for peripheral nerve regeneration and how each pathway can impact the neuromuscular tissue’s final electrophysiology. This information is important because it can guide us in planning the development of future bioelectronic devices, such as prosthetic limbs or neurostimulators. Future devices will primarily have to interface with tissue that has undergone some natural regeneration process, and so we have explored and reported here what is known about the bioelectrical features of neuromuscular tissue regeneration.

2013 ◽  
Vol 310 ◽  
pp. 660-664 ◽  
Author(s):  
Zi Guang Li ◽  
Guo Zhong Liu

As an emerging technology, brain-computer interface (BCI) bring us a novel communication channel which translate brain activities into command signals for devices like computer, prosthesis, robots, and so forth. The aim of the brain-computer interface research is to improve the quality life of patients who are suffering from server neuromuscular disease. This paper focus on analyzing the different characteristics of the brainwaves when a subject responses “yes” or “no” to auditory stimulation questions. The experiment using auditory stimuli of form of asking questions is adopted. The extraction of the feature adopted the method of common spatial patterns(CSP) and the classification used support vector machine (SVM) . The classification accuracy of "yes" and "no" answers achieves 80.2%. The experiment result shows the feasibility and effectiveness of this solution and provides a basis for advanced research .


2019 ◽  
Vol 34 (9) ◽  
pp. 517-529 ◽  
Author(s):  
Ramana Appireddy ◽  
Manish Ranjan ◽  
Bryce A. Durafourt ◽  
Jay Riva-Cambrin ◽  
Walter J. Hader ◽  
...  

Moyamoya disease is a chronic progressive cerebrovascular occlusive disease of the terminal portion of the internal carotid arteries associated with an acquired abnormal vascular network at the base of the brain, often leading to ischemic or hemorrhagic stroke. Moyamoya disease is a relatively common cause of pediatric stroke with a specific racial and well-identified clinical and imaging phenotype. Moyamoya disease is more prevalent in East Asian countries compared with other geographic regions with a higher incidence of familial cases and clinically more aggressive form. Moyamoya disease is one of the few causes of stroke that is amenable to effective surgical revascularization treatment. There are various surgical options available for revascularization, including the direct, indirect, or combined bypass techniques, each with variable responses. However, due to the heterogeneity of the diseases, different clinical course, geographical variables associated with the disease, and availability of a wide variety of surgical revascularization procedures, optimal selection of a surgical candidate and the surgical technique becomes challenging, particularly in the pediatric population. This brief review presents pertinent literature of clinical options for the diagnosis and surgical treatment of moyamoya disease in children.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
D. Grinsell ◽  
C. P. Keating

Unlike other tissues in the body, peripheral nerve regeneration is slow and usually incomplete. Less than half of patients who undergo nerve repair after injury regain good to excellent motor or sensory function and current surgical techniques are similar to those described by Sunderland more than 60 years ago. Our increasing knowledge about nerve physiology and regeneration far outweighs our surgical abilities to reconstruct damaged nerves and successfully regenerate motor and sensory function. It is technically possible to reconstruct nerves at the fascicular level but not at the level of individual axons. Recent surgical options including nerve transfers demonstrate promise in improving outcomes for proximal nerve injuries and experimental molecular and bioengineering strategies are being developed to overcome biological roadblocks limiting patient recovery.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii44-iii44
Author(s):  
K Huizer ◽  
A Sacchetti ◽  
W Dik ◽  
J M Kros ◽  
D Mustafa

Abstract BACKGROUND Although extensive angiogenesis takes place in glial tumors, anti-angiogenic therapies have remained without the expected success. In the peripheral circulation of glioma patients increased numbers of endothelial precursor cells (EPCs) are present, potentially offering targets for anti-angiogenic therapy (Zheng et al., Ann Neurol, 2007). However, for an anti-angiogenic therapy to be successful, the therapy should specifically target glioma-related EPC subsets and secreted factors. Here we compared the EPC subsets and plasma factors in the peripheral circulation of patients with gliomas to acute myocardial infarctions (representing fysiologic regeneration). MATERIAL AND METHODS We investigated the five most important EPC subsets and 21 angiogenesis-related plasma factors in peripheral blood samples of 29 patients with glioma, 14 patients with myocardial infarction and 20 healthy people as controls, by an advanced FACS protocol (Huizer et al., PlosOne 2018) and Luminex assay. RESULTS In GBM patients all EPC subsets were elevated as compared to healthy subjects. In addition, HPC and KDR+ cell fractions were higher than in MI, while CD133+ and KDR+CD133+ cell fractions were lower. There were differences in relative EPC fractions between the groups: KDR+ cells were the largest fraction in GBM while CD133+ cells were the largest fraction in MI. An increase in glioma malignancy grade coincided with an increase in the KDR+ fraction while the CD133+ cell fraction decreased relatively. Most plasma angiogenic factors were higher in GBM than MI patients. In both MI and GBM, the ratio of CD133+ HPCs correlated significantly with elevated levels of MMP9. In the GBM patients MMP9 correlated strongly with levels of all HPCs. CONCLUSION In conclusion, the data demonstrate that EPC traffic in patients with glioma is different from that in normal tissue regeneration. Therefore, the effects of glioma extent beyond the brain, and future therapies aimed at lowering KDR+ cells and HPCs may add to effective treatment.


1996 ◽  
Vol 183 (6) ◽  
pp. 2627-2634 ◽  
Author(s):  
H Hirota ◽  
H Kiyama ◽  
T Kishimoto ◽  
T Taga

In this study we aimed to examine a role for interleukin 6 (IL-6) and its receptor (IL-6R) in peripheral nerve regeneration in vivo. We first observed that cultured mouse embryonic dorsal root ganglia exhibited dramatic neurite extension by simultaneous addition of IL-6 and soluble IL-6R (sIL-6R), a complex that is known to interact with and activate a signal transducing receptor component, gp130. After injury in the hypoglossal nerve in adult mice by ligation, immunoreactivity to IL-6 was upregulated in Schwann cells at the lesional site as well as in the cell bodies of hypoglossal neurons in the brain stem. In the latter, upregulation of the immunoreactivity to IL-6R was also observed. Regeneration of axotomized hypoglossal nerve in vivo was significantly retarded by the administration of anti-IL-6R antibody. Surprisingly, accelerated regeneration of the axotomized nerve was achieved in transgenic mice constitutively expressing both IL-6 and IL-6R, as compared with nontransgenic controls. These results suggest that the IL-6 signal may play an important role in nerve regeneration after trauma in vivo.


2013 ◽  
Vol 25 (1) ◽  
pp. 289
Author(s):  
K. C. S. Roballo ◽  
A. C. M. Ercolin ◽  
M. Bionaz ◽  
C. E. Ambrosio ◽  
M. B. Wheeler

Stroke, Parkinson’s, Alzheimer’s, and other neurological diseases that are relatively frequent in human involve loss of neurons. The advent of tissue regeneration using stem cells holds great promise in finding cures. In particular, mesenchymal stem cells (MSC) appear to be a very potent source for tissue regeneration. Among MSC subtypes, adipose-derived stem cells (ASC) have several distinct advantages. The ASC are abundant, are easy to isolate and expand in vitro, can be used for heterologous as well autologous transplants, and have multilineage differentiation capacity. In addition to osteocytes, chondrocytes, and adipocytes, the ASC have been successfully differentiated into neuronal-like cells by addition of specific neurogenic factors. However, in vivo differentiation of ASC into neurons remains to be demonstrated. In the present study, we used an in vitro system in order to evaluate whether ASC can be induced towards neurogenic lineages by physical contact with freshly isolated neurons or by factors released by neurons without addition of specific neurogenic factors. Experimentally, ASC and neurons (NEU) were extracted from the back fat or the brain, respectively, of a boar transgenic for green fluorescent protein (GFP) or from wild type pigs. The non-GFP neurons were isolated from the brain of 32-day fetuses or adult pigs. Cells were cultivated in 24-well plates with the following combinations: only ASC or NEU in DMEM (controls), ASC with conditioned medium from NEU, or ASC+NEU. Cells were harvested at 24 h and at 3, 7, 14, and 21 days and fixed with 4% paraformaldehyde in PBS for 15 min for immunohistochemistry analysis. After fixation, neuronal differentiation was evaluated by histological staining with specific neuronal markers. The proportion of ASC that differentiated into neuronal-like cells was determined using fluorescence microscopy. We observed little proliferation of ASC in conditioned medium compared with control ASC; however, a few cells exhibited neuronal-like morphology but with no expression of neuronal markers. When ASC were co-cultured with fetal NEU, starting at 3 days, we observed, using microscope analyses, that 4 to 12% of the ASC had neuronal-like morphology and expressed neuron-associated cell markers. When ASC were co-cultured with neurons from adult brain, we observed a lower fraction (between 1 and 2%) of neuronal differentiated cells starting at 7 days. Our data are preliminary but provide evidence that when ASC are in physical contact with neurons (i.e. by cell-to-cell interactions), they can be induced to differentiate into neuronal-like cells. Further, the differentiation is more rapid and extensive when the ASC are in direct contact with fetal neurons. However, further study is necessary to determine whether these neuronal-like cells are functional neurons. In this regard, we are performing electrophysiological analysis and measurement of expression of neuronal genes. In addition, flow cytometry will be used to quantify the proportion of differentiated ASC.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Yang Liu ◽  
Noelle RB Stiles ◽  
Markus Meister

To restore vision for the blind, several prosthetic approaches have been explored that convey raw images to the brain. So far, these schemes all suffer from a lack of bandwidth. An alternate approach would restore vision at the cognitive level, bypassing the need to convey sensory data. A wearable computer captures video and other data, extracts important scene knowledge, and conveys that to the user in compact form. Here, we implement an intuitive user interface for such a device using augmented reality: each object in the environment has a voice and communicates with the user on command. With minimal training, this system supports many aspects of visual cognition: obstacle avoidance, scene understanding, formation and recall of spatial memories, navigation. Blind subjects can traverse an unfamiliar multi-story building on their first attempt. To spur further development in this domain, we developed an open-source environment for standardized benchmarking of visual assistive devices.


2018 ◽  
Vol 11 (1) ◽  
pp. bcr-2018-227525
Author(s):  
Haider Tawfeeq Alhillo ◽  
Hatem Azet Sadik ◽  
Teeba N Gheni ◽  
Samer S Hoz

A man, a teenage victim of an assault to the head, presented to the emergency department, in Baghdad, with a Glasgow Coma Score of 4/15 (E1 M2 V1) and total right-sided paralysis. CT of the brain revealed a large-left sided frontotemporoparietal extradural haematoma with the presence of an ipsilateral sylvian arachnoid cyst deep to the haematoma. Urgent surgical evacuation of the haematoma was performed, leaving the arachnoid cyst intact. The patient improved and gained full consciousness within 4 days.Three years after the initial trauma, the patient has remained well. This case required a thorough discussion of the surgical options, in particular whether to intervene with the associated cyst, and whether any intervention with the cyst should be performed in the same or future operations. This dilemma forms the basis of the discussion in the following report.


Theranostics ◽  
2019 ◽  
Vol 9 (15) ◽  
pp. 4255-4264 ◽  
Author(s):  
G. Kate Park ◽  
Su-Hwan Kim ◽  
Kyungmin Kim ◽  
Priyanka Das ◽  
Byung-Gee Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document