scholarly journals A comprehensive review of machine learning techniques on diabetes detection

Author(s):  
Toshita Sharma ◽  
Manan Shah

AbstractDiabetes mellitus has been an increasing concern owing to its high morbidity, and the average age of individual affected by of individual affected by this disease has now decreased to mid-twenties. Given the high prevalence, it is necessary to address with this problem effectively. Many researchers and doctors have now developed detection techniques based on artificial intelligence to better approach problems that are missed due to human errors. Data mining techniques with algorithms such as - density-based spatial clustering of applications with noise and ordering points to identify the cluster structure, the use of machine vision systems to learn data on facial images, gain better features for model training, and diagnosis via presentation of iridocyclitis for detection of the disease through iris patterns have been deployed by various practitioners. Machine learning classifiers such as support vector machines, logistic regression, and decision trees, have been comparative discussed various authors. Deep learning models such as artificial neural networks and recurrent neural networks have been considered, with primary focus on long short-term memory and convolutional neural network architectures in comparison with other machine learning models. Various parameters such as the root-mean-square error, mean absolute errors, area under curves, and graphs with varying criteria are commonly used. In this study, challenges pertaining to data inadequacy and model deployment are discussed. The future scope of such methods has also been discussed, and new methods are expected to enhance the performance of existing models, allowing them to attain greater insight into the conditions on which the prevalence of the disease depends.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1813 ◽  
Author(s):  
Alexander L. Bowler ◽  
Serafim Bakalis ◽  
Nicholas J. Watson

Mixing is one of the most common processes across food, chemical, and pharmaceutical manufacturing. Real-time, in-line sensors are required for monitoring, and subsequently optimising, essential processes such as mixing. Ultrasonic sensors are low-cost, real-time, in-line, and applicable to characterise opaque systems. In this study, a non-invasive, reflection-mode ultrasonic measurement technique was used to monitor two model mixing systems. The two systems studied were honey-water blending and flour-water batter mixing. Classification machine learning models were developed to predict if materials were mixed or not mixed. Regression machine learning models were developed to predict the time remaining until mixing completion. Artificial neural networks, support vector machines, long short-term memory neural networks, and convolutional neural networks were tested, along with different methods for engineering features from ultrasonic waveforms in both the time and frequency domain. Comparisons between using a single sensor and performing multisensor data fusion between two sensors were made. Classification accuracies of up to 96.3% for honey-water blending and 92.5% for flour-water batter mixing were achieved, along with R2 values for the regression models of up to 0.977 for honey-water blending and 0.968 for flour-water batter mixing. Each prediction task produced optimal performance with different algorithms and feature engineering methods, vindicating the extensive comparison between different machine learning approaches.


Author(s):  
Sangeetha Rajesh ◽  
N. J. Nalini

Singer identification is a challenging task in music information retrieval because of the combined instrumental music with the singing voice. The previous approaches focus on identification of singers based on individual features extracted from the music clips. The objective of this work is to combine Mel Frequency Cepstral Coefficients (MFCC) and Chroma DCT-reduced Pitch (CRP) features for singer identification system (SID) using machine learning techniques. The proposed system has mainly two phases. In the feature extraction phase, MFCC, [Formula: see text]MFCC, [Formula: see text]MFCC and CRP features are extracted from the music clips. In the identification phase, extracted features are trained with Bidirectional Long Short-Term Memory (BLSTM)-based Recurrent Neural Networks (RNN) and Convolution Neural Networks (CNN) and tested to identify different singer classes. The identification accuracy and Equal Error Rate (EER) are used as performance measures. Further, the experiments also demonstrate the effectiveness of score level fusion of MFCC and CRP feature in the singer identification system. Also, the experimental results are compared with the baseline system using support vector machines (SVM).


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Amandeep Kaur ◽  
Sushma Jain ◽  
Shivani Goel ◽  
Gaurav Dhiman

Context: Code smells are symptoms, that something may be wrong in software systems that can cause complications in maintaining software quality. In literature, there exists many code smells and their identification is far from trivial. Thus, several techniques have also been proposed to automate code smell detection in order to improve software quality. Objective: This paper presents an up-to-date review of simple and hybrid machine learning based code smell detection techniques and tools. Methods: We collected all the relevant research published in this field till 2020. We extracted the data from those articles and classified them into two major categories. In addition, we compared the selected studies based on several aspects like, code smells, machine learning techniques, datasets, programming languages used by datasets, dataset size, evaluation approach, and statistical testing. Results: Majority of empirical studies have proposed machine- learning based code smell detection tools. Support vector machine and decision tree algorithms are frequently used by the researchers. Along with this, a major proportion of research is conducted on Open Source Softwares (OSS) such as, Xerces, Gantt Project and ArgoUml. Furthermore, researchers paid more attention towards Feature Envy and Long Method code smells. Conclusion: We identified several areas of open research like, need of code smell detection techniques using hybrid approaches, need of validation employing industrial datasets, etc.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


2019 ◽  
Vol 36 (1) ◽  
pp. 272-279 ◽  
Author(s):  
Hannah F Löchel ◽  
Dominic Eger ◽  
Theodor Sperlea ◽  
Dominik Heider

AbstractMotivationClassification of protein sequences is one big task in bioinformatics and has many applications. Different machine learning methods exist and are applied on these problems, such as support vector machines (SVM), random forests (RF) and neural networks (NN). All of these methods have in common that protein sequences have to be made machine-readable and comparable in the first step, for which different encodings exist. These encodings are typically based on physical or chemical properties of the sequence. However, due to the outstanding performance of deep neural networks (DNN) on image recognition, we used frequency matrix chaos game representation (FCGR) for encoding of protein sequences into images. In this study, we compare the performance of SVMs, RFs and DNNs, trained on FCGR encoded protein sequences. While the original chaos game representation (CGR) has been used mainly for genome sequence encoding and classification, we modified it to work also for protein sequences, resulting in n-flakes representation, an image with several icosagons.ResultsWe could show that all applied machine learning techniques (RF, SVM and DNN) show promising results compared to the state-of-the-art methods on our benchmark datasets, with DNNs outperforming the other methods and that FCGR is a promising new encoding method for protein sequences.Availability and implementationhttps://cran.r-project.org/.Supplementary informationSupplementary data are available at Bioinformatics online.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6019
Author(s):  
José Manuel Lozano Domínguez ◽  
Faroq Al-Tam ◽  
Tomás de J. Mateo Sanguino ◽  
Noélia Correia

Improving road safety through artificial intelligence-based systems is now crucial turning smart cities into a reality. Under this highly relevant and extensive heading, an approach is proposed to improve vehicle detection in smart crosswalks using machine learning models. Contrarily to classic fuzzy classifiers, machine learning models do not require the readjustment of labels that depend on the location of the system and the road conditions. Several machine learning models were trained and tested using real traffic data taken from urban scenarios in both Portugal and Spain. These include random forest, time-series forecasting, multi-layer perceptron, support vector machine, and logistic regression models. A deep reinforcement learning agent, based on a state-of-the-art double-deep recurrent Q-network, is also designed and compared with the machine learning models just mentioned. Results show that the machine learning models can efficiently replace the classic fuzzy classifier.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


Sign in / Sign up

Export Citation Format

Share Document