scholarly journals Consistent changes in the intestinal microbiota of Atlantic salmon fed insect meal diets

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Yanxian Li ◽  
Karina Gajardo ◽  
Alexander Jaramillo-Torres ◽  
Trond M. Kortner ◽  
Åshild Krogdahl

Abstract Background Being part of fish's natural diets, insects have become a practical alternative feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. Results The insect meal diet markedly modulated the salmon intestinal microbiota. Salmon fed the insect meal diet showed similar or lower alpha-diversity indices in the digesta but higher alpha-diversity indices in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were also present in the feeds. Conclusions We conclude that salmon fed the insect meal diets show consistent changes in the intestinal microbiota. The next challenge is to evaluate the extent to which these alterations are attributable to feed microbiota and dietary nutrients, and what these changes mean for fish physiology and health.

2021 ◽  
Author(s):  
Yanxian Li ◽  
Karina Gajardo ◽  
Alexander Jaramillo-Torres ◽  
Trond M. Kortner ◽  
Åshild Krogdahl

Abstract Background: Being part of fish's natural diets, insects have become a realistic, sustainable feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon ( Salmo salar ) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly ( Hermetia illucens ) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. Results: The insect meal diet markedly modulated the salmon intestinal microbiota. Overall, the microbial diversity was lower in the digesta of salmon fed the insect meal diet but higher in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were also present in the feeds. Conclusions: We conclude that salmon fed the insect meal diets show consistent changes in the intestinal microbiota. The next challenge is to evaluate the extent to which these alterations are attributable to feed microbiota and dietary nutrients and what these changes mean for fish physiology and health.


2021 ◽  
Author(s):  
Yanxian Li ◽  
Karina Gajardo ◽  
Alexander Jaramillo-Torres ◽  
Trond M. Kortner ◽  
Ashild Krogdahl

Being part of fish's natural diets, insects have become a realistic, sustainable feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. The insect meal diet markedly modulated the salmon intestinal microbiota . Overall, the microbial diversity was lower in the digesta of salmon fed the insect meal diet but higher in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were present in the feeds as well. In conclusion, our results show consistent changes in the intestinal microbiota of Atlantic salmon fed diets containing black soldier fly larvae meal.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon (Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~ 15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. While feeding insects increased microbial richness and diversity in both digesta- and mucosa-associated intestinal microbiota, mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible. Specific taxa enriched in the intestinal mucosa are associated to gene expression related to immune responses and barrier function. Detailed studies are needed on the ecological and functional significance of taxa associated to intestinal microbiota dwelling on the mucosa.


2007 ◽  
Vol 97 (4) ◽  
pp. 699-713 ◽  
Author(s):  
Anne Marie Bakke-McKellep ◽  
Michael H. Penn ◽  
Patricia Mora Salas ◽  
Ståle Refstie ◽  
Sigmund Sperstad ◽  
...  

Soyabean meal (SBM)-induced enteritis in the distal intestine of the teleost Atlantic salmon (Salmo salar L.) and other salmonids may be considered a model for diet-related mucosal disorders in other animals and man. The role of the intestinal microbiota in its pathogenesis was explored. Compared to diets containing fishmeal (FM) as the sole protein source, responses to extracted SBM or the prebiotic inulin, with or without oxytetracycline (OTC) inclusion, were studied following a 3-week feeding trial. Intestinal microbiota, organosomatic indices and histology, as well as immunohistochemical detection of proliferating cell nuclear antigen (PCNA), heat shock protein 70 (HSP70) and caspase-3-positive cells in the distal intestine, were studied. Distal intestine somatic indices (DISI) were higher in inulin and lower in SBM compared to FM-fed fish. The low DISI caused by SBM corresponded with histological changes, neither of which was affected by OTC, despite a significant decrease in adherent bacteria count. Image analysis of PCNA-stained sections showed a significant increase in the proliferative compartment length in SBM-fed fish, accompanied by apparent increases in reactivity to HSP70 and caspase-3 along the mucosal folds, indicating induction of cellular repair and apoptosis, respectively. Fish fed the SBM diet had higher total number as well as a more diverse population composition of adherent bacteria in the distal intestine. Thus SBM-induced enteritis is accompanied by induction of distal intestinal epithelial cell protective responses and changes in microbiota. Putative involvement of bacteria in the inflammatory response merits further investigation.


2020 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background: Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon ( Salmo salar ) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~15% black soldier fly ( Hermetia illucens ) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results: Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and unclassified Spirochaetaceae , associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions: Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. Mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition than digesta-associated intestinal microbiota. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible.


2020 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. In a 16-week seawater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially-relevant reference diet or an insect meal diet containing 15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Lastly, multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and unclassified Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Overall, our data clearly indicate that responses in digesta- and mucosa-associated microbiota to dietary inclusion of insect meal differ, with the latter being more resilient to dietary changes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeleel Opeyemi Agboola ◽  
Marion Schiavone ◽  
Margareth Øverland ◽  
Byron Morales-Lange ◽  
Leidy Lagos ◽  
...  

AbstractYeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baikui Wang ◽  
Yuanhao Zhou ◽  
Li Tang ◽  
Zihan Zeng ◽  
Li Gong ◽  
...  

The aim of this study was to evaluate the dietary effects of Bacillus amyloliquefaciens SC06 (SC06) instead of antibiotics on the growth performance, intestinal health, and intestinal microbiota of broilers. A total of 360 30-day-old Lingnan yellow broilers were randomly allocated into two groups with six replicates per group (30 birds per replicate). The broilers were fed either a non-supplemented diet or a diet supplemented with 108 colony-forming units lyophilized SC06 per kilogram feed for 30 days. Results showed that SC06 supplementation had no effect on the growth performance compared with that of the control group. SC06 treatment significantly (P <0.05) increased the total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) activity in the liver, and the activities of trypsin, α-amylase (AMS), and Na+K+-ATPase in the ileum, whereas it decreased (P < 0.05) lipase, gamma glutamyl transpeptidase (γ-GT), and maltase activities in the ileum. Meanwhile, SC06 treatment also improved the immune function indicated by the significantly (P < 0.05) increased anti-inflammatory cytokine [interleukin (IL)-10] level and the decreased (P < 0.05) pro-inflammatory cytokine [IL-6 and tumor necrosis factor (TNF)-α] levels in the ileum. Furthermore, we also found that SC06 enhanced the intestinal epithelial intercellular integrity (tight junction and adhesion belt) in the ileum. Microbial analysis showed that SC06 mainly increased the alpha diversity indices in the jejunum, ileum, and cecum. SC06 treatment also significantly (P < 0.05) increased the abundances of Bacteroidetes, Bacteroidales, Bacteroides, Fusobacteria, Clostridiaceae, and Veillonellaceae in the cecum and simultaneously decreased the abundances of Planococcaceae in the duodenum, Microbacteriaceae in the jejunum, and Lachnospiraceae, [Ruminococcus] and Ruminococcus in cecum. In conclusion, these results suggested that B. amyloliquefaciens instead of antibiotics showed a potential beneficial effect on the intestinal health of broilers.


2020 ◽  
Author(s):  
Jeleel Agboola ◽  
Marion Schiavone ◽  
Margareth Øverland ◽  
Byron Morales-Lange ◽  
Leidy Lagos ◽  
...  

Abstract Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.


2021 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background: Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon (Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results: Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions: Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. While feeding insects increased microbial richness and diversity in both digesta- and mucosa-associated intestinal microbiota, mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible. Specific taxa enriched in the intestinal mucosa are associated to gene expression related to immune responses and barrier function. Detailed studies are needed on the ecological and functional significance of taxa associated to intestinal microbiota dwelling on the mucosa.


Sign in / Sign up

Export Citation Format

Share Document