scholarly journals Anionic surfactant sulfate dodecyl sodium (SDS)-induced thermodynamics and conformational changes of collagen by ultrasensitive microcalorimetry

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jie Zhang ◽  
Chunhua Wang ◽  
Fengteng Zhang ◽  
Wei Lin

Abstract In this communication, sulfate dodecyl sodium (SDS)-induced thermodynamics and conformational changes of collagen were studied. We used ultrasensitive differential scanning calorimetry (US-DSC) to directly monitor the thermal transition of collagen in the presence of SDS. The results show that SDS affects the conformation and thermal stability of collagen very differently depending on its concentrations. At CSDS ≤ 0.05 mM, the enhanced thermal stability of collagen indicates the stabilizing effect by SDS. However, a further increase of SDS leads to the denaturation of collagen, verifying the well-known ability of SDS to unfold proteins. This striking difference in thermodynamics and conformational changes of collagen caused by SDS concentrations can be explained in terms of their interactions. With increasing SDS, the binding of SDS to collagen can be dominated by electrostatic interaction shifting to hydrophobic interaction, and the latter plays a key role in loosening and unfolding the triple-helix structure of collagen. The important finding in the present study is the stabilizing effect of SDS on collagen molecules at extreme low concentration. Graphical abstract

1974 ◽  
Vol 137 (3) ◽  
pp. 599-602 ◽  
Author(s):  
A. E. Russell

The effects of KCNS and KI on thermal transition temperatures of calf skin collagen molecules in dilute acid solution and precipitated collagen fibrils from the same source were compared as a function of salt concentration and pH. The two salts produced qualitatively similar effects on each collagen form, but the response shown by single collagen molecules in dilute solution differed from that observed for molecular aggregates present in native-type fibrils.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


1999 ◽  
Vol 580 ◽  
Author(s):  
G.D. Hibbard ◽  
U. Erb ◽  
K.T. Aust ◽  
G. Palumbo

AbstractIn this study, the effect of grain size distribution on the thermal stability of electrodeposited nanocrystalline nickel was investigated by pre-annealing material such that a limited amount of abnormal grain growth was introduced. This work was done in an effort to understand the previously reported, unexpected effect, of increasing thermal stability with decreasing grain size seen in some nanocrystalline systems. Pre-annealing produced a range of grain size distributions in materials with relatively unchanged crystallographic texture and total solute content. Subsequent thermal analysis of the pre-annealed samples by differential scanning calorimetry showed that the activation energy of further grain growth was unchanged from the as-deposited nanocrystalline nickel.


2021 ◽  
Vol 900 (1) ◽  
pp. 012042
Author(s):  
N Stevulova ◽  
A Estokova

Abstract This paper is addressed to comparative study of changes in thermal stability of surface-modified hemp-hurds aggregates long-term incorporated in bio-aggregate-based composites with the original ones before their integration into alternative binder matrix. In this study, the effectiveness of alkaline treatment of hemp hurds compared to the raw bio-aggregates as well as in relation to their behaviour when they are long-term incorporated in the MgO-cement environment is investigated. The differences in the thermal behaviour of the samples are explained by the changed structure of hemp hurds constituents due to the pre-treatment and long-term action of the alternative binder components on the bio-aggregates. Alkaline treatment increases thermal stability of hemp hurds compared to raw sample. Also long-term incorporation of hemp hurds in MgO-cement matrix had a similar effect in case of alkaline modified bio-aggregates. The more alkali ions present in the structure of hemp hurdssamples, the more ash is formed during their thermal decomposition studied by thermal gravimetry (TG) and differential scanning calorimetry (DSC).


2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


Sign in / Sign up

Export Citation Format

Share Document