scholarly journals Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato

Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 90 ◽  
Author(s):  
Juhi Chaudhary ◽  
Praveen Khatri ◽  
Pankaj Singla ◽  
Surbhi Kumawat ◽  
Anu Kumari ◽  
...  

Tomato, one of the most important crops worldwide, has a high demand in the fresh fruit market and processed food industries. Despite having considerably high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic losses occurring due to biotic as well as abiotic stresses. Although tomato is a temperate crop, it is grown in almost all the climatic zones because of widespread demand, which makes it challenge to adapt in diverse conditions. Development of tomato cultivars with enhanced abiotic stress tolerance is one of the most sustainable approaches for its successful production. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery, and interaction of genetic and environmental factors. Several omics approaches, tools, and resources have already been developed for tomato growing. Modern sequencing technologies have greatly accelerated genomics and transcriptomics studies in tomato. These advancements facilitate Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). However, limited efforts have been made in other omics branches like proteomics, metabolomics, and ionomics. Extensive cataloging of omics resources made here has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided here will be helpful to understand the plant responses and the genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for tomato crop improvement.

2021 ◽  
Author(s):  
Smitha Kunhiraman Vasumathy ◽  
Manickavelu Alagu

Abstract I. Background: As rice is the staple food for more than half of the world population, enhancing grain yield irrespective of the variable climatic conditions is indispensable. Many of the traditionally cultivated rice landraces are well adapted to severe environmental conditions and have high genetic diversity that could play an important role in crop improvement.II. Methods and Results: The present study disclosed high level of genetic diversity among the unexploited rice landraces cultivated by farmers of Kerala. Twelve polymorphic markers detected a total of seventy- seven alleles with an average of 6.416 alleles per locus. PIC value ranged from 0.459 to 0.809 and to differentiate the rice genotypes, RM 242 was found to be the most appropriate marker with the highest value of 0.809. The current study indicated that the rice landraces were highly diverse with higher values of the effective number of alleles, PIC, and Shannon information index and utilizing these informative SSR markers for future molecular characterization and population genetic studies in rice landraces are advisable. Haplotypes are sets of genomic regions within a chromosome that are inherited together and haplotype-based breeding is a promising strategy for designing next-generation rice varieties. Here, haplotype analysis explored 270 haplotype blocks and 775 haplotypes from all the chromosomes of landraces under study. The number of SNPs in each haplotype block ranged from two to 28. Haplotypes of genes related to biotic and abiotic stress tolerance, yield-enhancing, and growth and development in rice landraces were also elucidated in the current study.III. Conclusions: The present investigation revealed genetic diversity of rice landraces and the haplotype analysis will open the way for genome wide association studies, QTL identification, and marker assisted selection in the unexplored rice landraces collected from Kerala.


Author(s):  
Tariq Shah ◽  
Jinsong Xu ◽  
Xiling Zou ◽  
Xuekun Zhang

Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence, and heavy metals. The effective management at molecular level is mandatory for thorough understanding of plant response to abiotic stress. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in wheat. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in wheat. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in wheat. This review also provides a comprehensive catalog of available online omic resources for wheat and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in wheat.


2018 ◽  
Vol 19 (8) ◽  
pp. 2390 ◽  
Author(s):  
Tariq Shah ◽  
Jinsong Xu ◽  
Xiling Zou ◽  
Yong Cheng ◽  
Mubasher Nasir ◽  
...  

Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.


Agronomy ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 31 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Kamrun Nahar ◽  
Md. Hossain ◽  
Jubayer Mahmud ◽  
...  

Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance.


2019 ◽  
Vol 24 (1) ◽  
pp. 91-109
Author(s):  
Rajeswari Somasundaram ◽  
Neeru Sood ◽  
Gokhale Trupti Swarup ◽  
Ramachandran Subramanian

Identifying naturally existing abiotic-stress tolerant accessions in cereal crops is central to understanding plant responses toward sstress. Salinity is an abiotic stressor that limits crop yields. Salt stress triggers major physiological changes in plants, but individual plants may perform differently under salt stress. In the present study, 112 barley accessions were grown under controlled salt stress conditions (1 Sm-1 salinity) until harvest. The accessions were then analyzed for set of agronomic and physiological traits. Under salt stress, less than 5 % of the assessed accessions (CIHO6969, PI63926, PI295960, and PI531867) displayed early flowering. Only two (< 2 %) of the accessions (PI327671 and PI383011) attained higher fresh and dry weight, and a better yield under salt stress. Higher K+/Na+ ratios were maintained by four accessions PI531999, PI356780, PI452343, and PI532041. These top-performing accessions constitute naturally existing variants within barley’s gene pool that will be instrumental to deepen our understanding of abiotic-stress tolerance in crops.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 788 ◽  
Author(s):  
Youngdae Yoon ◽  
Deok Hyun Seo ◽  
Hoyoon Shin ◽  
Hui Jin Kim ◽  
Chul Min Kim ◽  
...  

Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.


Author(s):  
Mirza Hasanuzzaman ◽  
M.H.M. Borhannuddin Bhuyan ◽  
Kamrun Nahar ◽  
Md. Shahadat Hossain ◽  
Jubayer Al Mahmud ◽  
...  

Among the plant nutrients potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of plant structure but also plays regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, enzyme activation. There are several physiological processes like stomatal regulation and photosynthesis are dependent on K. In the recent decades K was found to provide abiotic stress tolerance. Under salt stress, K helps in maintaining ion homeostasis and regulation of osmotic balance. Under drought stress condition K regulates the stomatal opening and makes the plants adaptive to water deficit. Many reports provided the notion that K enhances the antioxidant defense in plants and therefore, protects the plants from oxidative stress under various environmental adversities. Also, it provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although a considerable progress in understanding K-induced abiotic stress tolerance in plants has been achieved the exact molecular mechanisms of such protections are still under research. In this review, we summarized the recent literature on the biological functions of K, its uptake, and translocation and its role in plant abiotic stress tolerance.


2017 ◽  
Vol 155 (10) ◽  
pp. 1497-1507 ◽  
Author(s):  
A. K. TRIVEDI ◽  
L. ARYA ◽  
S. K. VERMA ◽  
R. K. TYAGI ◽  
A. HEMANTARANJAN

SUMMARYThe mountain ecosystem of the Central Himalayan Region is known for its diversity of crops and their wild relatives. In spite of adverse climatic conditions, this region is endowed with a rich diversity of millets. Hence, the aim of the present study was to explore, collect, conserve and evaluate the diversity of barnyard millet (Echinochloa frumentacea) to find out the extent of diversity available in different traits and the traits responsible for abiotic stress tolerance, and to identify trait-specific accessions for crop improvement and also for the cultivation of millets in the region as well as in other similar agro-ecological regions. A total of 178 accessions were collected and evaluated for a range of morpho-physiological and biochemical traits. Significant variability was noted in days to 50% flowering, days to 80% maturity, 1000 seed weight and yield potential of the germplasm. These traits are considered to be crucial for tailoring new varieties for different agro-climatic conditions. Variations in biochemical traits such as lipid peroxidation (0·552–7·421 nmol malondialdehyde formed/mg protein/h), total glutathione (105·270–423·630 mmol/g fresh weight) and total ascorbate (4·980–9·880 mmol/g fresh weight) content indicate the potential of collected germplasm for abiotic stress tolerance. Principal component analysis also indicated that yield, superoxide dismutase activity, plant height, days to 50% flowering, catalase activity and glutathione content are suitable traits for screening large populations of millet and selection of suitable germplasm for crop improvement and cultivation. Trait-specific accessions identified in the present study could be useful in crop improvement programmes, climate-resilient agriculture and improving food security in areas with limited resources.


Sign in / Sign up

Export Citation Format

Share Document