scholarly journals Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice

2011 ◽  
Vol 91 (1) ◽  
pp. 167-181 ◽  
Author(s):  
Je-In Youn ◽  
Michelle Collazo ◽  
Irina N. Shalova ◽  
Subhra K. Biswas ◽  
Dmitry I. Gabrilovich
2020 ◽  
Vol 10 ◽  
Author(s):  
Kai Yin ◽  
Xueli Xia ◽  
Ke Rui ◽  
Tingting Wang ◽  
Shengjun Wang

Colorectal cancer (CRC) remains a devastating human malignancy with poor prognosis. Of the various factors, immune evasion mechanisms play pivotal roles in CRC progression and impede the effects of cancer therapy. Myeloid-derived suppressor cells (MDSCs) constitute an immature population of myeloid cells that are typical during tumor progression. These cells have the ability to induce strong immunosuppressive effects within the tumor microenvironment (TME) and promote CRC development. Indeed, MDSCs have been shown to accumulate in both tumor-bearing mice and CRC patients, and may therefore become an obstacle for cancer immunotherapy. Consequently, numerous studies have focused on the characterization of MDSCs and their immunosuppressive capacity, as well as developing novel approaches to suppress MDSCs function with different approaches. Current therapeutic strategies that target MDSCs in CRC include inhibition of their recruitment and alteration of their function, alone or in combination with other therapies including chemotherapy, radiotherapy and immunotherapy. Herein, we summarize the recent roles and mechanisms of MDSCs in CRC progression. In addition, a brief review of MDSC-targeting approaches for potential CRC therapy is presented.


2019 ◽  
Vol 120 ◽  
pp. 109458 ◽  
Author(s):  
Peiqi Xu ◽  
Kai Yin ◽  
Xinyi Tang ◽  
Jie Tian ◽  
Yue Zhang ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi10-vi10
Author(s):  
Manmeet Ahluwalia ◽  
Matthew Grabowski ◽  
Tyler Alban ◽  
Balint Otvos ◽  
Defne Bayik ◽  
...  

Abstract Glioblastoma (GBM) creates an immunosuppressive environment that presents a challenge to efficacy of immunotherapeutic approaches. Results from the CheckMate-143 trial demonstrated responses in 8% of patients with nivolumab, underscoring the need for further insight into the mechanisms and markers of immune suppression and response. Given a limited set of biomarkers predictive of immunotherapy response in GBM, we explored the changes in immune cell populations in nivolumab and bevacizumab-treated GBM patients pre and post-treatment in order to help predict response. In these studies, we utilized traditional and newly developed approaches, including mass cytometry time-of-flight (CyTOF), single-cell RNA sequencing, and 10X Genomics simultaneous cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq). We analyzed patients’ samples in a randomized, phase 2 study of nivolumab and bevacizumab at GBM first recurrence (NCT03452579). Nine patients were identified as responders or non-responders at 8 weeks after therapy initiation. Utilizing peripheral blood samples, we observed a 6.4-fold decrease in immunosuppressive myeloid-derived suppressor cells (MDSCs) between baseline and first imaging follow-up in responders compared to non-responders, with a 4.9-fold decrease in the granulocytic MDSC (G-MDSC) subtype in responders over non-responders. While no significant changes in overall T-cell numbers were noted, expression of PD-1 on CD4+ T cells was significantly elevated at baseline and follow-up in responders as compared to non-responders – signatures which were confirmed by CyTOF. Given these immunophenotypic changes, preliminary results of a detailed investigation of this cohort by CITE-seq indicate that responders had increased IL7R-positive T cells post-treatment, which was not observed in non-responders. These results are currently being validated in an additional 40 patients that have been enrolled. Altogether, differences in immunophenotypes that were specific to responders and non-responders were observed, and characterization of these immune populations may be helpful in identifying GBM patients likely to benefit from immunotherapy.


2012 ◽  
Vol 92 (6) ◽  
pp. 1199-1206 ◽  
Author(s):  
Chi Ma ◽  
Tamar Kapanadze ◽  
Jaba Gamrekelashvili ◽  
Michael P. Manns ◽  
Firouzeh Korangy ◽  
...  

2013 ◽  
Vol 1 (Suppl 1) ◽  
pp. P193
Author(s):  
Patrick L Raber ◽  
Paul Thevenot ◽  
Rosa Sierra ◽  
Dorota Wyczechowska ◽  
Maria E Ramirez ◽  
...  

2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 415-415
Author(s):  
Yuji Takeyama ◽  
Minoru Kato ◽  
Yasuomi Shimizu ◽  
Kosuke Hamada ◽  
Taro Iguchi ◽  
...  

415 Background: The emergence of immune checkpoint inhibitors (ICI) has brought hope for cure and survival for those suffering from various cancers, including bladder cancer. However, the response rate of ICI monotherapy is modest, and recent reports indicate that myeloid-derived suppressor cells (MDSC) might play a role in the resistant mechanism of ICI. In this study, we assess the effect of chemokine signal on the proliferation of bladder cancer and investigate whether MDSC could be a new target for the treatment of cisplatin-resistant bladder cancer. Methods: We established a cisplatin resistant strain (MB49R) of mice bladder cancer cell line MB49, and examined the alteration of the expression levels of inflammatory chemokines by chemokine array. Next, we isolated MDSCs from spleen and tumor in tumor-bearing mice to examine gene expression levels of chemokine receptors (CXCR2 and CCR2) and immunosuppression genes (Arg-1 and iNOS). Furthermore, we assessed the efficacy of CDDP, α-PD-L1 and chemokine antagonists against the proliferation of tumors in MB49 and MB49R xenograft models. Results: Expression levels of CCL2 and CXCL1/2, which are involved in the migration of MDSC, were significantly increased in the culture supernatant of MB49R compared to those in MB49 cell lines. This result was confirmed by real-time RT-qPCR of tumor extract, and this increase was also observed in human bladder cancer cell lines (T24 and T24R). CXCR2 and CCR2 were highly expressed in PMN-MDSC and M-MDSC, respectively, which were isolated from spleen or tumors in tumor-bearing mice, and gene expression levels of Arg-1 and iNOS were dramatically increased in M-MDSCs from the tumor tissues compared to those from spleen. Also, analysis by flow cytometry revealed that PMN-MDSC dramatically decreased in MB49R compared to parental MB49 tumors, while the proportion of M-MDSC was not changed in MB49R, which indicates that M-MDSC could be a target for the treatment of CDDP resistant bladder cancer. Conclusions: The results in the present study might indicate that the combination treatment with ICI and MDSC-targeting therapy could be an option for the treatment of cisplatin-resistant bladder cancer.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149948 ◽  
Author(s):  
Liying Yao ◽  
Masanori Abe ◽  
Keitarou Kawasaki ◽  
Sheikh Mohammad Fazle Akbar ◽  
Bunzo Matsuura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document