QUANTITATIVE INTERPRETATION OF VERTICAL MAGNETIC ANOMALIES OVER VEINS

Geophysics ◽  
1950 ◽  
Vol 15 (4) ◽  
pp. 667-686 ◽  
Author(s):  
Kenneth L. Cook

By using ordinary magnetic induction methods of analysis, Haalck, Heiland, and others have developed formulas which express the magnetic anomaly over a vertical or inclined vein of tabular shape as a function of the susceptibility, dimensions, shape, and disposition of the vein, and of the strength and direction of the earth’s magnetic field. On the basis of these fundamental formulas, other formulas for the vertical component of the magnetic field are derived in the present paper for such veins in intermediate northern magnetic latitudes. Special emphasis is given to the orientation of the veins relative to the magnetic north direction. Several families of vertical magnetic intensity curves for veins with different strikes and dips are given. All theoretical curves for veins striking magnetic north are plotted in terms of a parametric unit so that, once plotted, they can be used repeatedly in different districts, provided a proper multiplying factor is chosen for the observed curve. The importance of the transverse horizontal magnetization effect under certain conditions of orientation is demonstrated. It is shown mathematically that small vertical magnetic anomalies are to be expected for thin veins striking east and dipping south at an angle equal to, or approximately equal to, the complement of the angle of magnetic inclination.

Geophysics ◽  
1951 ◽  
Vol 16 (3) ◽  
pp. 431-449 ◽  
Author(s):  
L. B. Slichter

An interpretation problem in electromagnetic prospecting is discussed. A flat earth in which the three electrical properties of material vary only with depth is subjected to an alternating inducing field produced by a dipole above the surface with axis perpendicular to the surface. Observations of the horizontal or of the vertical component of the magnetic intensity at the ground’s surface are supposed to be available at all distances. From these observations solutions for the three unknown functions are developed. When the magnetic permeability is variable, the solutions for the permeability and dielectric functions require observations at two different frequencies. The conductivity function may be found from observations at a single frequency. It is shown that the horizontal and vertical components of the magnetic field intensity are mutually dependent in the region above the ground’s surface; and formulae independent of the ground’s characteristics are deduced for expressing [Formula: see text] in terms of [Formula: see text], and vice‐versa. Here [Formula: see text] denotes a plane coincident with or above and parallel to, the earth’s surface.


Author(s):  
Muhammad Irsyad ◽  
Sutrisno Sutrisno ◽  
Dwi Haryanto

Abstrak. Batuan merupakan benda yang berasal dari magma yang mendingin di dalam bumi. Untuk mengetahui kondisi batuan perlu di lakukan penelitian. Mamuju merupakan daerah yang sedang hangat dalam perbincangan peneliti tentang bagaimana kandungan di bawah permukaan daerah Mamuju, Sulawesi Barat. Daerah ini juga merupakan daerah yang diteliti oleh instansi-instansi pemerintah termasuk PTBGN-BATAN. Penelitian ini bertujuan untuk melakukan pemodelan bawah permukaan bumi. Tujuannya untuk memberikan informasi tentang kondisi baik itu bentuk maupun kedalaman batuan. penelitian ini menggunakan metode magnetik dan metode ini merupakan metode yang tepat untuk membuat model bawah permukaan bumi. Hasil interpretasi kualitatif diperoleh peta kontur intensitas magnetik total dan anomali magnetik. Peta kontur intensitas magnetik total memiliki nilai sebesar 41286,5 – 42280 nT. Sedangkan anomali magnetik memiliki nilai -760,1 – 231,8 nT. Daerah A dan daerah B merupakan daerah yang memiliki anomali tinggi. Hasil interpretasi kuantitatif didapat ada 4 model bawah permukaan yang masing-masing terdapat batuan yang sama yaitu batuan breksi dengan nilai suseptibilitas 0,0006 – 0,00075 satuan cgs dan batuan lava dengan nilai suseptibilitas 0.001 – 0.0015 satuan cgs. daerah yang dilakukan pemodelan fokus pada daerah Hulu Mamuju, hal ini disebabkan karena menurut peta kontur daerah tersebut merupakan daerah yang memiliki anomali magnetik yang tinggi.   Abstract. The rocks are objects derived from the magma cooled in the earth. To determine the condition of the rock is necessary to do research. Mamuju is an area that is warm in conversation investigators about how the content of subsurface area Mamuju, West Sulawesi. This area is also the area investigated by government agencies including PTBGN-BATAN. This study aimed to modeling subsurface. The goal is to provide information about the condition of both the shape and depth of rock. This study uses a magnetic method and this method is an appropriate method to create a model of the earth's subsurface. Qualitative interpretation of results obtained contour map of total magnetic intensity and magnetic anomalies. The total magnetic intensity contour map has a value of 41286.5 to 42280 nT. While the magnetic anomaly has a value of -760.1 - 231.8 nT. Area A and area B is an area that has a high anomaly. Results obtained quantitative interpretation there are 4 models of the subsurface that each contained the same rock is rock breccia with values susceptibility of 0.0006 to 0.00075 cgs units and lava rock with susceptibility value 0.001 - 0.0015 cgs unit. modeling area focuses on upstream area Mamuju, this is because according to the contour map of the area is an area that has a high magnetic anomaly.


Geophysics ◽  
1949 ◽  
Vol 14 (2) ◽  
pp. 133-150 ◽  
Author(s):  
D. C. Skeels ◽  
R. J. Watson

In an earlier paper by one of the authors, it was pointed out that if the vertical component of a gravitational or magnetic field is known over a horizontal plane surface of sufficient extent, all other components and derivatives of the field can theoretically be calculated by surface integration of the vertical component. In this paper, examples are given to show that within certain limits such calculations are not only theoretically possible but practically so. Examples are given of the calculations of curvatures from observed gradients and of horizontal magnetic intensity from observed vertical intensity, and the calculated values are compared with those obtained by observation. Examples are also given, based on artificial data, of the calculation of plumb‐line deflections from gravity and of the calculation of magnetic anomalies at a given elevation above the earth from data obtained at the surface. The purpose of these calculations is to demonstrate the nonindependence of the various derivatives of gravitational and magnetic potential.


1976 ◽  
Vol 13 (6) ◽  
pp. 790-802 ◽  
Author(s):  
R. L. Coles ◽  
G. V. Haines ◽  
W. Hannaford

A contoured map of vertical magnetic field residuals (relative to the IGRF) over western Canada and adjacent Arctic regions has been produced by amalgamating new data with those from previous surveys. The measurements were made at altitudes between 3.5 and 5.5 km above sea level. The map shows the form of the magnetic field within the waveband 30 to 5000 km. A magnetic feature of several thousand kilometres wavelength dominates the map, and is probably due in major part to sources in the earth's core. Superimposed on this are several groups of anomalies which contain wavelengths of the order of a thousand kilometres. The patterns of the short wavelength anomalies provide a broad view of major structures and indicate several regimes of distinctive evolutionary development. Enhancement of viscous magnetization at elevated temperatures may account for the concentration of intense anomalies observed near the western edge of the craton.


2018 ◽  
Vol 620 ◽  
pp. A191 ◽  
Author(s):  
M. Benko ◽  
S. J. González Manrique ◽  
H. Balthasar ◽  
P. Gömöry ◽  
C. Kuckein ◽  
...  

Context. It has been empirically determined that the umbra-penumbra boundaries of stable sunspots are characterized by a constant value of the vertical magnetic field. Aims. We analyzed the evolution of the photospheric magnetic field properties of a decaying sunspot belonging to NOAA 11277 between August 28–September 3, 2011. The observations were acquired with the spectropolarimeter on-board of the Hinode satellite. We aim to prove the validity of the constant vertical magnetic-field boundary between the umbra and penumbra in decaying sunspots. Methods. A spectral-line inversion technique was used to infer the magnetic field vector from the full-Stokes profiles. In total, eight maps were inverted and the variation of the magnetic properties in time were quantified using linear or quadratic fits. Results. We find a linear decay of the umbral vertical magnetic field, magnetic flux, and area. The penumbra showed a linear increase of the vertical magnetic field and a sharp decay of the magnetic flux. In addition, the penumbral area quadratically decayed. The vertical component of the magnetic field is weaker on the umbra-penumbra boundary of the studied decaying sunspot compared to stable sunspots. Its value seem to be steadily decreasing during the decay phase. Moreover, at any time of the sunspot decay shown, the inner penumbra boundary does not match with a constant value of the vertical magnetic field, contrary to what is seen in stable sunspots. Conclusions. During the decaying phase of the studied sunspot, the umbra does not have a sufficiently strong vertical component of the magnetic field and is thus unstable and prone to be disintegrated by convection or magnetic diffusion. No constant value of the vertical magnetic field is found for the inner penumbral boundary.


2020 ◽  
Vol 25 (2) ◽  
pp. 223-233
Author(s):  
Pan Wu ◽  
Minghui Wei

The non-coplanar cross-buried pipelines are a common way of pipeline wiring. In order to investigate the magnetic anomaly characteristics of the non-coplanar cross-buried pipelines and guide the site operation, the influences of a series of factors on the magnetic anomaly of the non-coplanar cross-buried pipelines are analyzed. Based on the principle of magnetic dipole construction, a forward model is established for the magnetic anomaly characteristics of the subsurface non-coplanar cross-buried pipelines. The basic characteristics of magnetic anomaly for the non-coplanar cross-buried pipelines are defined. The influences of geomagnetic parameters (geomagnetic intensity, geomagnetic inclination, and geomagnetic declination), pipeline parameters (thickness, magnetic susceptibility), and cross angle of pipelines on the characteristics of magnetic anomalies are analyzed. The results show that the shape of the total magnetic anomaly is mainly affected by the magnetic inclination, and the curve of magnetic anomaly at ± I site shows some symmetry. The amplitude is approximately linearly affected by the total geomagnetic field, magnetic declination, pipeline thickness, material magnetic susceptibility, and pipeline cross angle. There is a periodic change of the amplitude with the increase of geomagnetic inclination (−90°–>90°). The crest-trough distance is mainly affected by geomagnetic inclination, magnetic declination, thickness, magnetic susceptibility, and pipeline cross angle. A more accurate measurement can be achieved if the direction of the pipelines is roughly measured and then the number of measurement points is augmented near the intersection of pipelines and the measurement lines. Present work obtains the equivalent magnetic dipole units by segmenting pipelines. The magnetic anomaly characteristics of non-coplanar crossed iron pipelines are successfully simulated. The numerical results are in accordance with the experimental analysis.


2019 ◽  
Vol 19 (2) ◽  
pp. 195-201
Author(s):  
Chris M. Hall ◽  
Magnar G. Johnsen

AbstractA hypothesis is proposed wherein changes in the Earth's magnetic field affect the migratory paths of snow buntings (Plectrophenax nivalis), and in particular from wintering grounds in the Russian/Ukrainian steppes to breeding grounds on Svalbard and with a typical stopover in Finnmark in northern Norway. If one were to assume ignorance of the secular movement of the magnetic north pole approximately 1500 km northwards between 1908 and 2020, the magnetoreceptor contribution to snow buntings' navigation would result in winter-to-summer migratory paths progressively further to the East. In turn, this could be a contributing factor to declining populations in Finnmark and favouring a more frequent flightpath over the Kola Peninsula. On the other hand, short-term perturbations in the magnetic field (i.e. induced by solar activity) and therefore existing for a relatively small proportion of the flight time (if at all) for the individual migrations legs seem unlikely to influence the stopover locations significantly. Even so, these space-weather induced variations cannot be disregarded, particularly for success in reaching Svalbard.


2012 ◽  
Vol 524-527 ◽  
pp. 1993-1996
Author(s):  
Yan Li Jiang ◽  
Liang Yu ◽  
Nai Xiang Feng

The magnetic field of the 168 kA aluminum reduction cell was calculated with the software ANSYS in our study. The calculated results showed that the magnetic line of the aluminum and electrolyte in cell formed a clockwise swirl. The X and Z magnetic intensity of aluminum was similar with the antisymmetric distribution and the magnetic intensity vector of aluminum reduced along the -Z axis. The X, Y and Z magnetic intensity in the electrolyte under the anode bottom was similar with the antisymmetric distribution along short axis (Y axis), long axis (X axis) and short axis (Y axis), respectively. The magnetic intensity vector of electrolyte in the gap of the anode was higher than that under the anode bottom. The X and Z magnetic intensity in the interface of melt was also similar with the antisymmetric distribution. The numerical simulations with ANSYS have the important references for project analysis and diagnose.


2018 ◽  
Vol 14 (2) ◽  
pp. 20170752 ◽  
Author(s):  
Nathan F. Putman ◽  
Michelle M. Scanlan ◽  
Amanda M. Pollock ◽  
Joseph P. O'Neil ◽  
Ryan B. Couture ◽  
...  

Organisms use a variety of environmental cues to orient their movements in three-dimensional space. Here, we show that the upward movement of young Chinook salmon ( Oncorhynchus tshawytscha ) emerging from gravel nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic field travelled farther upwards through substrate than did fish tested in a field with the vertical component inverted. This suggests that the magnetic field is one of several factors that influences emergence from the gravel, possibly by serving as an orientation cue that helps fish determine which way is up. Moreover, our work indicates that the Oncorhynchus species are sensitive to the magnetic field throughout their life cycles, and that it guides their movements across a range of spatial scales and habitats.


Sign in / Sign up

Export Citation Format

Share Document