Diffraction of seismic waves by cracks with application to hydraulic fracturing

Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 253-265 ◽  
Author(s):  
Enru Liu ◽  
Stuart Crampin ◽  
John A. Hudson

We describe a method of modeling seismic waves interacting with single liquid‐filled large cracks based on the Kirchhoff approximation and then apply it to field data in an attempt to estimate the size of a hydraulic fracture. We first present the theory of diffraction of seismic waves by fractures using a Green's function representation and then compute the scattered radiation patterns and synthetic seismograms for fractures with elliptical and rectangular shapes of various dimensions. It is shown that the characteristics of the diffracted wavefield from single cracks are sensitive to both crack size and crack shape. Finally, we compare synthetic waveforms to observed waveforms recorded during a hydraulic fracturing experiment and are able to predict successfully the size of a hydraulically induced fracture (length and height). In contrast to previously published work based on the Born approximation, we model both phases and amplitudes of observed diffracted waves. Our modeling has resulted in an estimation of a crack length 1.1 to 1.5 times larger than previously predicted, whereas the height remains essentially the same as that derived using other techniques. This example demonstrates that it is possible to estimate fracture dimensions by analyzing diffracted waves.

Geophysics ◽  
1978 ◽  
Vol 43 (4) ◽  
pp. 730-737 ◽  
Author(s):  
M. Schoenberger ◽  
F. K. Levin

In a paper with the same title published in Geophysics (June 1974), we showed that synthetic seismograms from two wells gave a frequency‐dependent attenuation due to intrabed multiples of about 0.06 dB/wavelength. This loss was 1/3 to 1/2 of the total attenuation found for field data on lines near the wells. Our data sufficed to confirm the conclusion of O’Doherty and Anstey that attenuation caused by intrabed multiples may be appreciable, but the number of wells was insufficient to establish the magnitude of that attenuation in general. To get a better feel for intrabed multiple‐generated attenuation, we have computed losses for 31 additional wells from basins all over the world. Sonic and, where available, density logs were digitized every foot and converted into synthetic seismograms with 50 orders of intrabed multiples. Using the technique of the 1974 paper of extending the logs and placing an isolated reflector 2000 ft below the bottom of the wells, we computed attenuation constants for plane seismic waves that had traveled down and back through the subsurfaces defined by the logs. Computed constants varied from 0.01 dB/wavelength to 0.22 dB/wavelength. Total traveltimes ranged from 0.7 to 2.7 sec; the average was 1.9 sec. Attenuation constants computed from surface seismic data near four of the 31 wells gave values 1.3 to 7 times the corresponding intrabed constants. Thus, attenuation due to intrabed multiples accounts for an appreciable fraction of the observed attenuation but by no means all of it.


2021 ◽  
Author(s):  
A. Kirby Nicholson ◽  
Robert C. Bachman ◽  
R. Yvonne Scherz ◽  
Robert V. Hawkes

Abstract Pressure and stage volume are the least expensive and most readily available data for diagnostic analysis of hydraulic fracturing operations. Case history data from the Midland Basin is used to demonstrate how high-quality, time-synchronized pressure measurements at a treatment and an offsetting shut-in producing well can provide the necessary input to calculate fracture geometries at both wells and estimate perforation cluster efficiency at the treatment well. No special wellbore monitoring equipment is required. In summary, the methods outlined in this paper quantifies fracture geometries as compared to the more general observations of Daneshy (2020) and Haustveit et al. (2020). Pressures collected in Diagnostic Fracture Injection Tests (DFITs), select toe-stage full-scale fracture treatments, and offset observation wells are used to demonstrate a simple workflow. The pressure data combined with Volume to First Response (Vfr) at the observation well is used to create a geometry model of fracture length, width, and height estimates at the treatment well as illustrated in Figure 1. The producing fracture length of the observation well is also determined. Pressure Transient Analysis (PTA) techniques, a Perkins-Kern-Nordgren (PKN) fracture propagation model and offset well Fracture Driven Interaction (FDI) pressures are used to quantify hydraulic fracture dimensions. The PTA-derived Farfield Fracture Extension Pressure, FFEP, concept was introduced in Nicholson et al. (2019) and is summarized in Appendix B of this paper. FFEP replaces Instantaneous Shut-In Pressure, ISIP, for use in net pressure calculations. FFEP is determined and utilized in both DFITs and full-scale fracture inter-stage fall-off data. The use of the Primary Pressure Derivative (PPD) to accurately identify FFEP simplifies and speeds up the analysis, allowing for real time treatment decisions. This new technique is called Rapid-PTA. Additionally, the plotted shape and gradient of the observation-well pressure response can identify whether FDI's are hydraulic or poroelastic before a fracture stage is completed and may be used to change stage volume on the fly. Figure 1Fracture Geometry Model with FDI Pressure Matching Case studies are presented showing the full workflow required to generate the fracture geometry model. The component inputs for the model are presented including a toe-stage DFIT, inter-stage pressure fall-off, and the FDI pressure build-up. We discuss how to optimize these hydraulic fractures in hindsight (look-back) and what might have been done in real time during the completion operations given this workflow and field-ready advanced data-handling capability. Hydraulic fracturing operations can be optimized in real time using new Rapid-PTA techniques for high quality pressure data collected on treating and observation wells. This process opens the door for more advanced geometry modeling and for rapid design changes to save costs and improve well productivity and ultimate recovery.


2021 ◽  
Vol 73 (04) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17–19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17-19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction The concept of rate transient analysis (RTA) involves the use of rate and pressure trends of producing wells to estimate properties such as permeability and fracture surface area. While very useful, RTA is an analytical technique and has commensurate limitations. In the complete paper, different RTA motifs are generated using a simulator. Insights from these motif simulations are used to modify simulation parameters to expediate and inform the history- matching process. The simulation history-matching work flow presented includes the following steps: 1 - Set up a simulation model with geologic properties, wellbore and completion designs, and fracturing and production schedules 2 - Run an initial model 3 - Tune the fracture geometries (height and length) to heuristic data: microseismic, frac-hit data, distributed acoustic sensing, or other diagnostics 4 - Match instantaneous shut-in pressure (ISIP) and wellhead pressure (WHP) during injection 5 - Make RTA plots of the real and simulated production data 6 - Use the motifs presented in the paper to identify possible production mechanisms in the real data 7 - Adjust history-matching parameters in the simulation model based on the intuition gained from RTA of the real data 8 -Iterate Steps 5 through 7 to obtain a match in RTA trends 9 - Modify relative permeabilities as necessary to obtain correct oil, water, and gas proportions In this study, the authors used a commercial simulator that fully integrates hydraulic fracturing, wellbore, and reservoir simulation into a single modeling code. Matching Fracturing Data The complete paper focuses on matching production data, assisted by RTA, not specifically on the matching of fracturing data such as injection pressure and fracture geometry (Steps 3 and 4). Nevertheless, for completeness, these steps are very briefly summarized in this section. Effective fracture toughness is the most-important factor in determining fracture length. Field diagnostics suggest considerable variability in effective fracture toughness and fracture length. Typical half-lengths are between 500 and 2,000 ft. Laboratory-derived values of fracture toughness yield longer fractures (propagation of 2,000 ft or more from the wellbore). Significantly larger values of fracture toughness are needed to explain the shorter fracture length and higher net pressure values that are often observed. The authors use a scale- dependent fracture-toughness parameter to increase toughness as the fracture grows. This allows the simulator to match injection pressure data while simultaneously limiting fracture length. This scale-dependent toughness scaling parameter is the most-important parameter in determining fracture size.


2020 ◽  
Vol 29 (7) ◽  
pp. 075009
Author(s):  
Cheng Jun ◽  
He Cunfu ◽  
Lyu Yan ◽  
Zheng Yang ◽  
Xie Longyang

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1469 ◽  
Author(s):  
Sriniketh Sukumar ◽  
Ruud Weijermars ◽  
Ibere Alves ◽  
Sam Noynaert

The recent interest in redeveloping the depleted Austin Chalk legacy field in Bryan (TX, USA) mandates that reservoir damage and subsurface trespassing between adjacent reservoirs be mitigated during hydraulic fracture treatments. Limiting unintended pressure communication across reservoir boundaries during hydraulic fracturing is important for operational efficiency. Our study presents field data collected in fall 2017 that measured the annular pressure changes that occurred in Austin Chalk wells during the zipper fracturing treatment of two new wells in the underlying Eagle Ford Formation. The data thereby obtained, along with associated Eagle Ford stimulation reports, was analyzed to establish the degree of pressure communication between the two reservoirs. A conceptual model for pressure communication is developed based on the pressure response pattern, duration, and intensity. Additionally, pressure depletion in the Austin Chalk reservoir is modeled based on historic production data. Pressure increases observed in the Austin Chalk wells were about 6% of the Eagle Ford injection pressures. The pressure communication during the fracture treatment was followed by a rapid decline of the pressure elevation in the Austin Chalk wells to pre-fracture reservoir pressure, once the Eagle Ford fracture operation ended. Significant production uplifts occurred in several offset Austin Chalk wells, coeval with the observed temporal pressure increase. Our study confirms that after the rapid pressure decline following the short-term pressure increase in the Austin Chalk, no residual pressure communication remained between the Austin Chalk and Eagle Ford reservoirs. Limiting pressure communication between adjacent reservoirs during hydraulic fracturing is important in order to minimize the loss of costly fracturing fluid and to avoid undue damage to the reservoir and nearby wells via unintended proppant pollution. We provide field data and a model that quantifies the degree of pressure communication between adjacent reservoirs (Austin Chalk and Eagle Ford) for the first time.


2020 ◽  
Vol 17 (5) ◽  
pp. 1259-1271
Author(s):  
Hong-Yan Shen ◽  
Qin Li ◽  
Yue-Ying Yan ◽  
Xin-Xin Li ◽  
Jing Zhao

Abstract Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones. However, the energy of diffracted waves is weaker than that of reflections. Therefore, the extraction of diffracted waves is the basis for the effective utilization of diffracted waves. Based on the difference in travel times between diffracted and reflected waves, we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging. The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out (NMO) correction. Then, a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence. Following, separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO. Synthetic and field examples show that our proposed method has the advantages of fewer constraints, fast processing speed and complete extraction of diffracted waves. And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones.


2019 ◽  
Vol 38 (6) ◽  
pp. 436-441 ◽  
Author(s):  
André J.-M. Pugin ◽  
Kevin Brewer ◽  
Timothy Cartwright ◽  
Steven L. Sargent

We present three case studies on detecting buried glacial boulders, a sewage tunnel, and abandoned coal mine tunnels using shear-wave reflection methods. The seismic signature of such subsurface features is in the form of an isolated diffraction, distinctly recognized on seismic sections obtained from shallow seismic surveys using a transverse horizontal (H2) source and a multichannel landstreamer that consists of H2 geophones. We used H2 impulsive and vibrator sources with varying bandwidth. Based on field experiments with multicomponent recordings, we determined that the H2-H2 source-receiver configuration is the most optimal to generate downgoing horizontally polarized shear (SH) waves and upcoming SH reflected and diffracted waves. A shallow SH-SH image using a microvibe high-frequency sweep exhibits a wavelength between 1 and 2 m, which is comparable to that of a ground-penetrating radar image with the additional advantage of deeper penetration.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. U89-U94 ◽  
Author(s):  
Sergey Fomel ◽  
Evgeny Landa ◽  
M. Turhan Taner

Small geologic features manifest themselves in seismic data in the form of diffracted waves, which are fundamentally different from seismic reflections. Using two field-data examples and one synthetic example, we demonstrate the possibility of separating seismic diffractions in the data and imaging them with optimally chosen migration velocities. Our criteria for separating reflection and diffraction events are the smoothness and continuity of local event slopes that correspond to reflection events. For optimal focusing, we develop the local varimax measure. The objectives of this work are velocity analysis implemented in the poststack domain and high-resolution imaging of small-scale heterogeneities. Our examples demonstrate the effectiveness of the proposed method for high-resolution imaging of such geologic features as faults, channels, and salt boundaries.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. U53-U63 ◽  
Author(s):  
Andrea Tognarelli ◽  
Eusebio Stucchi ◽  
Alessia Ravasio ◽  
Alfredo Mazzotti

We tested the properties of three different coherency functionals for the velocity analysis of seismic data relative to subbasalt exploration. We evaluated the performance of the standard semblance algorithm and two high-resolution coherency functionals based on the use of analytic signals and of the covariance estimation along hyperbolic traveltime trajectories. Approximate knowledge of the wavelet was exploited to design appropriate filters that matched the primary reflections, thereby further improving the ability of the functionals to highlight the events of interest. The tests were carried out on two synthetic seismograms computed on models reproducing the geologic setting of basaltic intrusions and on common midpoint gathers from a 3D survey. Synthetic and field data had a very low signal-to-noise ratio, strong multiple contamination, and weak primary subbasalt signals. The results revealed that high-resolution coherency functionals were more suitable than semblance algorithms to detect primary signals and to distinguish them from multiples and other interfering events. This early discrimination between primaries and multiples could help to target specific signal enhancement and demultiple operations.


Sign in / Sign up

Export Citation Format

Share Document