Examination of AVO responses in the eastern deepwater Gulf of Mexico

Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1864-1876 ◽  
Author(s):  
Tad M. Smith ◽  
Carl H. Sondergeld

Exploration programs in deepwater Tertiary basins (e.g., the Gulf of Mexico) typically rely on bright‐spot and amplitude variation with offset (AVO) technology to help identify oil‐ and gas‐charged sands. The reliance on these attributes, along with the high cost of exploration programs in deepwater environments, has driven the need to examine the limitations of these technologies and to build robust models for the conditions under which AVO is useful as a fluid and/or lithology indicator. We build subregional AVO background trends for both brine‐ and gas‐saturated sands from several wells from the eastern deepwater Gulf of Mexico. These trends are built from the depth dependencies of velocities and densities for both shale and sands (brine saturated). Simple models of AVO gradient and intercept are constructed as a function of depth below the mud line. Sand and shale properties show little velocity contrast, justifying the interpretation of these data in the context of linearized AVO models. In addition to the in‐situ brine response, the response to gas is also calculated. These trend models indicate that the AVO response is suppressed (although still positive) below a depth of approximately 10 000 ft below the mud line. Even optimistic porosity modeling (sand porosity >30°) does not substantially change this conclusion. An important corollary is that the absence of a strong AVO anomaly at these deeper depths cannot be used with confidence when ruling out hydrocarbon presence. This observation also highlights the need to crossplot attributes to best predict hydrocarbon presence. Velocity data collected as part of this study are also used to generate a local shear velocity estimator for sands and shale. These shear estimators are similar in form to other published estimators, but minor differences in coefficients may become important in AVO modeling.

2020 ◽  
Vol 8 (4) ◽  
pp. SP135-SP156
Author(s):  
Heloise Lynn

The azimuthal (az’l) processing of 3D full-azimuth full-offset P-P reflection seismic data can enable better imaging, thus yielding improved estimates of structure, lithology, porosity, pore fluids, in situ stress, and aligned porosity that flows fluids (macrofracture porosity). In the past 34 years, the oil and gas industry has significantly advanced in the use of seismic azimuthal anisotropy, in particular, to gain information concerning unequal horizontal stresses and/or vertically aligned fractures, and possibly more importantly, to improve the prestack imaging especially in complex structure. The important development stages during the past 40 years were enabled by industry advancements in acquisition, processing, theory, and interpretation. The typical important techniques became evident in PP amplitude variation with angle and azimuth (AVAaz) and orthorhombic imaging. These techniques addressed the complications due to wave propagation in birefringent media. PP AVAaz, now industry standard for vertically aligned fracture characterization, is accompanied by a near-angle azimuthal amplitude variation when aligned connected porosity that flows fluids is present. Birefringence is present with unequal horizontal stresses and/or vertically aligned fractures that flow fluids. I have focused on the field-data documentation of the relationships among azimuthal P-P reflection data, S-wave birefringence, and hydrocarbon production. With increases and improvements in acquisition and processing, plus today’s powerful versatile interpretation platforms, continual advances beyond orthorhombic (ORT) into monoclinic and triclinic symmetries are to be expected. The use of 3D azimuthal seismic for time-lapse changes of the in situ stress field, fracture populations, and pore fluids, as rocks undergo production processes (oil and gas reservoir production processes, wastewater disposal, etc.) and at plate boundaries where stresses change, offers great potential to benefit not just the oil and gas industry but all of humanity.


Geophysics ◽  
1976 ◽  
Vol 41 (5) ◽  
pp. 985-996 ◽  
Author(s):  
Edwin L. Hamilton

The objectives of this paper are to review and study selected measurements of the velocity of shear waves at various depths in some principal types of unlithified, water‐saturated sediments, and to discuss probable variations of shear velocity as a function of pressure and depth in the sea floor. Because of the lack of data for the full range of marine sediments, data from measurements on land were used, and the study was confined to the two “end‐member” sediment types (sand and silt‐clays) and turbidites. The shear velocity data in sands included 29 selected in‐situ measurements at depths to 12 m. The regression equation for these data is: [Formula: see text], where [Formula: see text] is shear‐wave velocity in m/sec, and D is depth in meters. The data from field and laboratory studies indicate that shear‐wave velocity is proportional to the 1/3 to 1/6 power of pressure or depth in sands; that the 1/6 power is not reached until very high pressures are applied; and that in most sand bodies the velocity of shear waves is proportional to the 3/10 to 1/4 power of depth or pressure. The use of a depth exponent of 0.25 is recommended for prediction of shear velocity versus depth in sands. The shear velocity data in silt‐clays and turbidites include 47 selected in‐situ measurements at depths to 650 m. Three linear equations are used to characterize the data. The equation for the 0 to 40 m interval [Formula: see text] indicates the gradient [Formula: see text] to be 4 to 5 times greater than is the compressional velocity gradient in this interval in comparable sediments. At deeper depths, shear velocity gradients are [Formula: see text] from 40 to 120 m, and [Formula: see text] from 120 to 650 m. These deeper gradients are comparable to those of compressional wave velocities. These shear velocity gradients can be used as a basis for predicting shear velocity versus depth.


2021 ◽  
Vol 9 (4) ◽  
pp. T1133-T1141
Author(s):  
Feng Tan ◽  
Jun-Xing Cao ◽  
Xing-Jian Wang ◽  
Peng Bai ◽  
Jun Liu ◽  
...  

The Shaximiao Formation in the Zhongjiang Gas Field of the Sichuan Basin was initially a high-productivity gas field with the bright spot channel as the vital exploration target. With further development, gas wells were obtained in some nonbright spot areas, which caused interpreters to pay great attention to the channels with nonbright spot abnormal amplitudes. We have developed a method to delineate nonbright spot channels from the complicated sand-mudstone contact relationship. First, we classified sandstone into types I, IIa, IIb, and III, depending on the responses of the amplitude variation with offset from the drilled data, to produce a forward model. We the explain why the hidden channel cannot be identified using the full-angle stack seismic data based on this model. Afterward, we put forward a difference, between the synthetic seismogram responses of bright and nonbright channels, in creating seismic-to-well ties for nonbright channels. This difference from bright channels is that the synthetic data’s wave peak is not corresponding to the peak of the real seismic data. The wave trough has the same situation. Finally, we used far-angle stack seismic data to calculate coherent energy and instantaneous spectral attributes (the latter produced for red-green-blue blending) to identify the hidden channel. We observed that parts of the channel are more clearly visible in the far-angle stack than in the full-angle stack data. In the latter situation, we cannot describe the geometric shape of the channel elaborately. The Shaximiao Formation example is a relatively effective analog for nonbright spot plays compared with elsewhere.


1979 ◽  
Author(s):  
Floyd T. Bryan ◽  
John H. Knipmeyer ◽  
E. Kenneth Schluntz

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B295-B306 ◽  
Author(s):  
Alexander Duxbury ◽  
Don White ◽  
Claire Samson ◽  
Stephen A. Hall ◽  
James Wookey ◽  
...  

Cap rock integrity is an essential characteristic of any reservoir to be used for long-term [Formula: see text] storage. Seismic AVOA (amplitude variation with offset and azimuth) techniques have been applied to map HTI anisotropy near the cap rock of the Weyburn field in southeast Saskatchewan, Canada, with the purpose of identifying potential fracture zones that may compromise seal integrity. This analysis, supported by modeling, observes the top of the regional seal (Watrous Formation) to have low levels of HTI anisotropy, whereas the reservoir cap rock (composite Midale Evaporite and Ratcliffe Beds) contains isolated areas of high intensity anisotropy, which may be fracture-related. Properties of the fracture fill and hydraulic conductivity within the inferred fracture zones are not constrained using this technique. The predominant orientations of the observed anisotropy are parallel and normal to the direction of maximum horizontal stress (northeast–southwest) and agree closely with previous fracture studies on core samples from the reservoir. Anisotropy anomalies are observed to correlate spatially with salt dissolution structures in the cap rock and overlying horizons as interpreted from 3D seismic cross sections.


2016 ◽  
Vol 65 (3) ◽  
pp. 736-746 ◽  
Author(s):  
Chao Xu ◽  
Jianxin Wei ◽  
Bangrang Di

Sign in / Sign up

Export Citation Format

Share Document