Amplitude variation with offset analysis of nonbright spots for gas channel identification: A case study from the western Sichuan Basin, China

2021 ◽  
Vol 9 (4) ◽  
pp. T1133-T1141
Author(s):  
Feng Tan ◽  
Jun-Xing Cao ◽  
Xing-Jian Wang ◽  
Peng Bai ◽  
Jun Liu ◽  
...  

The Shaximiao Formation in the Zhongjiang Gas Field of the Sichuan Basin was initially a high-productivity gas field with the bright spot channel as the vital exploration target. With further development, gas wells were obtained in some nonbright spot areas, which caused interpreters to pay great attention to the channels with nonbright spot abnormal amplitudes. We have developed a method to delineate nonbright spot channels from the complicated sand-mudstone contact relationship. First, we classified sandstone into types I, IIa, IIb, and III, depending on the responses of the amplitude variation with offset from the drilled data, to produce a forward model. We the explain why the hidden channel cannot be identified using the full-angle stack seismic data based on this model. Afterward, we put forward a difference, between the synthetic seismogram responses of bright and nonbright channels, in creating seismic-to-well ties for nonbright channels. This difference from bright channels is that the synthetic data’s wave peak is not corresponding to the peak of the real seismic data. The wave trough has the same situation. Finally, we used far-angle stack seismic data to calculate coherent energy and instantaneous spectral attributes (the latter produced for red-green-blue blending) to identify the hidden channel. We observed that parts of the channel are more clearly visible in the far-angle stack than in the full-angle stack data. In the latter situation, we cannot describe the geometric shape of the channel elaborately. The Shaximiao Formation example is a relatively effective analog for nonbright spot plays compared with elsewhere.

Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V201-V221 ◽  
Author(s):  
Mehdi Aharchaou ◽  
Erik Neumann

Broadband preprocessing has become widely used for marine towed-streamer seismic data. In the standard workflow, far-field source designature, receiver and source-side deghosting, and redatuming to mean sea level are applied in sequence, with amplitude compensation for background [Formula: see text] delayed until the imaging or postmigration stages. Thus, each step is likely to generate its own artifacts, quality checking can be time-consuming, and broadband data are only obtained late in this chained workflow. We have developed a unified method for broadband preprocessing — called integrated broadband preprocessing (IBP) — which enables the joint application of all the above listed steps early in the processing sequence. The amplitude, phase, and amplitude-variation-with-offset fidelity of IBP are demonstrated on pressure data from the shallow, deep, and slanted streamers. The integration allows greater sparsity to emerge in the representation of seismic data, conferring clear benefits over the sequential application. Moreover, time sparsity, full dimensionality, and early amplitude [Formula: see text] compensation all have an impact on broadband data quality, in terms of reduced ringing artifacts, improved wavelet integrity at large crossline angles, and fewer residual high-frequency multiples.


Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1864-1876 ◽  
Author(s):  
Tad M. Smith ◽  
Carl H. Sondergeld

Exploration programs in deepwater Tertiary basins (e.g., the Gulf of Mexico) typically rely on bright‐spot and amplitude variation with offset (AVO) technology to help identify oil‐ and gas‐charged sands. The reliance on these attributes, along with the high cost of exploration programs in deepwater environments, has driven the need to examine the limitations of these technologies and to build robust models for the conditions under which AVO is useful as a fluid and/or lithology indicator. We build subregional AVO background trends for both brine‐ and gas‐saturated sands from several wells from the eastern deepwater Gulf of Mexico. These trends are built from the depth dependencies of velocities and densities for both shale and sands (brine saturated). Simple models of AVO gradient and intercept are constructed as a function of depth below the mud line. Sand and shale properties show little velocity contrast, justifying the interpretation of these data in the context of linearized AVO models. In addition to the in‐situ brine response, the response to gas is also calculated. These trend models indicate that the AVO response is suppressed (although still positive) below a depth of approximately 10 000 ft below the mud line. Even optimistic porosity modeling (sand porosity >30°) does not substantially change this conclusion. An important corollary is that the absence of a strong AVO anomaly at these deeper depths cannot be used with confidence when ruling out hydrocarbon presence. This observation also highlights the need to crossplot attributes to best predict hydrocarbon presence. Velocity data collected as part of this study are also used to generate a local shear velocity estimator for sands and shale. These shear estimators are similar in form to other published estimators, but minor differences in coefficients may become important in AVO modeling.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. R151-R163 ◽  
Author(s):  
Javad Rezaie ◽  
Jo Eidsvik ◽  
Tapan Mukerji

Information analysis can be used in the context of reservoir decisions under uncertainty to evaluate whether additional data (e.g., seismic data) are likely to be useful in impacting the decision. Such evaluation of geophysical information sources depends on input modeling assumptions. We studied results for Bayesian inversion and value of information analysis when the input distributions are skewed and non-Gaussian. Reservoir parameters and seismic amplitudes are often skewed and using models that capture the skewness of distributions, the input assumptions are less restrictive and the results are more reliable. We examined the general methodology for value of information analysis using closed skew normal (SN) distributions. As an example, we found a numerical case with porosity and saturation as reservoir variables and computed the value of information for seismic amplitude variation with offset intercept and gradient, all modeled with closed SN distributions. Sensitivity of the value of information analysis to skewness, mean values, accuracy, and correlation parameters is performed. Simulation results showed that fewer degrees of freedom in the reservoir model results in higher value of information, and seismic data are less valuable when seismic measurements are spatially correlated. In our test, the value of information was approximately eight times larger for a spatial-dependent reservoir variable compared with the independent case.


Geophysics ◽  
1985 ◽  
Vol 50 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Ross Alan Ensley

Shear waves differ from compressional waves in that their velocity is not significantly affected by changes in the fluid content of a rock. Because of this relationship, a gas‐related compressional‐wave “bright spot” or direct hydrocarbon indicator will have no comparable shear‐wave anomaly. In contrast, a lithology‐related compressional‐wave anomaly will have a corresponding shear‐wave anomaly. Thus, it is possible to use shear‐wave seismic data to evaluate compressional‐wave direct hydrocarbon indicators. This case study presents data from Myrnam, Alberta which exhibit the relationship between compressional‐ and shear‐wave seismic data over a gas reservoir and a low‐velocity coal.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. C153-C162 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Hitoshi Mikada

Wavefield properties such as traveltime and relative geometric spreading (traveltime derivatives) are highly essential in seismic data processing and can be used in stacking, time-domain migration, and amplitude variation with offset analysis. Due to the complexity of an elastic orthorhombic (ORT) medium, analysis of these properties becomes reasonably difficult, where accurate explicit-form approximations are highly recommended. We have defined the shifted hyperbola form, Taylor series (TS), and the rational form (RF) approximations for P-wave traveltime and relative geometric spreading in an elastic ORT model. Because the parametric form expression for the P-wave vertical slowness in the derivation is too complicated, TS (expansion in offset) is applied to facilitate the derivation of approximate coefficients. The same approximation forms computed in the acoustic ORT model also are derived for comparison. In the numerical tests, three ORT models with parameters obtained from real data are used to test the accuracy of each approximation. The numerical examples yield results in which, apart from the error along the y-axis in ORT model 2 for the relative geometric spreading, the RF approximations all are very accurate for all of the tested models in practical applications.


2017 ◽  
Vol 5 (4) ◽  
pp. T531-T544
Author(s):  
Ali H. Al-Gawas ◽  
Abdullatif A. Al-Shuhail

The late Carboniferous clastic Unayzah-C in eastern central Saudi Arabia is a low-porosity, possibly fractured reservoir. Mapping the Unayzah-C is a challenge due to the low signal-to-noise ratio (S/N) and limited bandwidth in the conventional 3D seismic data. A related challenge is delineating and characterizing fracture zones within the Unayzah-C. Full-azimuth 3D broadband seismic data were acquired using point receivers, low-frequency sweeps down to 2 Hz, and 6 km patch geometry. The data indicate significant enhancement in continuity and resolution of the reflection data, leading to improved mapping of the Unayzah-C. Because the data set has a rectangular patch geometry with full inline offsets to 6000 m, using amplitude variation with offset and azimuth (AVOA) may be effective to delineate and characterize fracture zones within Unayzah-A and Unayzah-C. The study was undertaken to determine the improvement of wide-azimuth seismic data in fracture detection in clastic reservoirs. The results were validated with available well data including borehole images, well tests, and production data in the Unayzah-A. There are no production data or borehole images within the Unayzah-C. For validation, we had to refer to a comparison of alternative seismic fracture detection methods, mainly curvature and coherence. Anisotropy was found to be weak, which may be due to noise, clastic lithology, and heterogeneity of the reservoirs, in both reservoirs except for along the western steep flank of the study area. These may correspond to some north–south-trending faults suggested by circulation loss and borehole image data in a few wells. The orientation of the long axis of the anisotropy ellipses is northwest–southeast, and it is not in agreement with the north–south structural trend. No correlation was found among the curvature, coherence, and AVOA in Unayzah-A or Unayzah-C. Some possible explanations for the low correlation between the AVOA ellipticity and the natural fractures are a noisy data set, overburden anisotropy, heterogeneity, granulation seams, and deformation.


2022 ◽  
Author(s):  
Lamees N. Abdulkareem ◽  

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the controlling parameter on the AVO analysis. AVO cross plots from the real pre-stack seismic data reveal AVO class IV (showing a negative intercept decreasing with offset). This result matches our modelled result of fluid substitution for the seismic synthetics. It is concluded that fluid substitution is the controlling parameter on the AVO analysis and therefore, the high amplitude anomaly on the seabed and the target horizon 9 is the result of changing the fluid content and the lithology along the target horizons. While changing the porosity has little effect on the amplitude variation with offset within the AVO cross plot. Finally, results from the wedge models show that a small change of thickness causes a change in the amplitude; however, this change in thickness gives a different AVO characteristic and a mismatch with the AVO result of the real 2D pre-stack seismic data. Therefore, a constant thin layer with changing fluids is more likely to be the cause of the high amplitude anomalies.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. V197-V206 ◽  
Author(s):  
Ali Gholami ◽  
Milad Farshad

The traditional hyperbolic Radon transform (RT) decomposes seismic data into a sum of constant amplitude basis functions. This limits the performance of the transform when dealing with real data in which the reflection amplitudes include the amplitude variation with offset (AVO) variations. We adopted the Shuey-Radon transform as a combination of the RT and Shuey’s approximation of reflectivity to accurately model reflections including AVO effects. The new transform splits the seismic gather into three Radon panels: The first models the reflections at zero offset, and the other two panels add capability to model the AVO gradient and curvature. There are two main advantages of the Shuey-Radon transform over similar algorithms, which are based on a polynomial expansion of the AVO response. (1) It is able to model reflections more accurately. This leads to more focused coefficients in the transform domain and hence provides more accurate processing results. (2) Unlike polynomial-based approaches, the coefficients of the Shuey-Radon transform are directly connected to the classic AVO parameters (intercept, gradient, and curvature). Therefore, the resulting coefficients can further be used for interpretation purposes. The solution of the new transform is defined via an underdetermined linear system of equations. It is formulated as a sparsity-promoting optimization, and it is solved efficiently using an orthogonal matching pursuit algorithm. Applications to different numerical experiments indicate that the Shuey-Radon transform outperforms the polynomial and conventional RTs.


2021 ◽  
Vol 40 (4) ◽  
pp. 277-286
Author(s):  
Haiyang Wang ◽  
Olivier Burtz ◽  
Partha Routh ◽  
Don Wang ◽  
Jake Violet ◽  
...  

Elastic properties from seismic data are important to determine subsurface hydrocarbon presence and have become increasingly important for detailed reservoir characterization that aids to derisk specific hydrocarbon prospects. Traditional techniques to extract elastic properties from seismic data typically use linear inversion of imaged products (migrated angle stacks). In this research, we attempt to get closer to Tarantola's visionary goal for full-wavefield inversion (FWI) by directly obtaining 3D elastic properties from seismic shot-gather data with limited well information. First, we present a realistic 2D synthetic example to show the need for elastic physics in a strongly elastic medium. Then, a 3D field example from deepwater West Africa is used to validate our workflow, which can be practically used in today's computing architecture. To enable reservoir characterization, we produce elastic products in a cascaded manner and run 3D elastic FWI up to 50 Hz. We demonstrate that reliable and high-resolution P-wave velocity can be retrieved in a strongly elastic setting (i.e., with a class 2 or 2P amplitude variation with offset response) in addition to higher-quality estimation of P-impedance and VP/VS ratio. These parameters can be directly used in interpretation, lithology, and fluid prediction.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R245-R255 ◽  
Author(s):  
Ali Gholami ◽  
Hossein S. Aghamiry ◽  
Mostafa Abbasi

The inversion of prestack seismic data using amplitude variation with offset (AVO) has received increased attention in the past few decades because of its key role in estimating reservoir properties. AVO is mainly governed by the Zoeppritz equations, but traditional inversion techniques are based on various linear or quasilinear approximations to these nonlinear equations. We have developed an efficient algorithm for nonlinear AVO inversion of precritical reflections using the exact Zoeppritz equations in multichannel and multi-interface form for simultaneous estimation of the P-wave velocity, S-wave velocity, and density. The total variation constraint is used to overcome the ill-posedness while solving the forward nonlinear model and to preserve the sharpness of the interfaces in the parameter space. The optimization is based on a combination of Levenberg’s algorithm and the split Bregman iterative scheme, in which we have to refine the data and model parameters at each iteration. We refine the data via the original nonlinear equations, but we use the traditional cost-effective linearized AVO inversion to construct the Jacobian matrix and update the model. Numerical experiments show that this new iterative procedure is convergent and converges to a solution of the nonlinear problem. We determine the performance and optimality of our nonlinear inversion algorithm with various simulated and field seismic data sets.


Sign in / Sign up

Export Citation Format

Share Document