Seismoelectric imaging of shallow targets

Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. G9-G20 ◽  
Author(s):  
Seth S. Haines ◽  
Steven R. Pride ◽  
Simon L. Klemperer ◽  
Biondo Biondi

We have undertaken a series of controlled field experiments to develop seismoelectric experimental methods for near-surface applications and to improve our understanding of seismoelectric phenomena. In a set of off-line geometry surveys (source separated from the receiver line), we place seismic sources and electrode array receivers on opposite sides of a man-made target (two sand-filled trenches) to record separately two previously documented seismoelectric modes: (1) the electromagnetic interface response signal created at the target and (2) the coseismic electric fields located within a compressional seismic wave. With the seismic source point in the center of a linear electrode array, we identify the previously undocumented seismoelectric direct field, and the Lorentz field of the metal hammer plate moving in the earth’s magnetic field. We place the seismic source in the center of a circular array of electrodes (radial and circumferential orientations) to analyze the source-related direct and Lorentz fields and to establish that these fields can be understood in terms of simple analytical models. Using an off-line geometry, we create a multifold, 2D image of our trenches as dipping layers, and we also produce a complementary synthetic image through numerical modeling. These images demonstrate that off-line geometry (e.g., crosswell) surveys offer a particularly promising application of the seismoelectric method because they effectively separate the interface response signal from the (generally much stronger) coseismic and source-related fields.

Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 967-978 ◽  
Author(s):  
Alan G. Jones

Previous modeling investigations of the static shift of magnetotelluric (MT) apparent resistivity curves have limited appeal in that the electric fields used were point measurements, whereas field observations are of voltage differences. Thus, inhomogeneities of dimension of the order of the electrode line length could not be investigated. In this paper, by using a modeling algorithm that derives point voltages rather than point electric fields, I consider the effect on the MT responses of local near‐surface distorting structures, which are both outside of, and inside, the telluric electrode array. I show that static‐shift effects are of larger spatial size but of less magnitude than would be expected from conventional modeling. Also, the field observation that static shift affects only the apparent resistivity curve but not the phase response can be replicated by the voltage difference modeling. If there exists within the earth a layer whose variation in electrical resistivity along the profile can be treated in a parametric fashion, then static shift of the apparent resistivity curves can be corrected. Deriving the modal value from a sufficient number of observations for the layer resistivity is the most useful approach.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. G13-G23 ◽  
Author(s):  
James Macnae ◽  
Christopher Adams

Electromagnetic survey methodology is adapted to use the electric component to directly detect buried resistors and map resistivity contrasts in the near surface. System implementations do not require ground contact because they use capacitive electric-field sensors and an inductive source and may be operated at walking pace. This study outlined theoretical basis, computational modeling, and verification for the methodology. The systems are designed to operate at low enough frequency that any responses are at the resistive limit; as such, the electric fields they measure are insensitive to horizontal layering and absolute conductivity. A surface integral equation algorithm is used to model regular discrete objects in a half-space. Anomalies are controlled by geometry and lateral resistivity contrast rather than by absolute resistivity values. A prototype electrode array system called CARIS 1 reliably detects resistive objects submerged in a saltwater tank, and the measured responses are consistent with numerical modeling. These results provided the basis for further development of the CARIS II system with flexible geometry that is adaptable to detect resistive or conductive targets in any background environment. CARIS is designed to be useful where conventional electromagnetics, ground-penetrating radar, and conventional resistivity face difficulties or fail, and it has easily detected a range of buried targets in the near surface. However, it is quite sensitive to disturbed ground and surface undulation and inhomogeneity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng-Cheng Zhang ◽  
Bin Shi ◽  
Song Zhang ◽  
Kai Gu ◽  
Su-Ping Liu ◽  
...  

AbstractVertical deformation profiles of subterranean geological formations are conventionally measured by borehole extensometry. Distributed strain sensing (DSS) paired with fiber-optic cables installed in the ground opens up possibilities for acquiring high-resolution static and quasistatic strain profiles of deforming strata, but it is currently limited by reduced data quality due to complicated patterns of interaction between the buried cables and their surroundings, especially in upper soil layers under low confining pressures. Extending recent DSS studies, we present an improved approach using microanchored fiber-optic cables—designed to optimize ground-to-cable coupling at the near surface—for strain determination along entire lengths of vertical boreholes. We proposed a novel criterion for soil–cable coupling evaluation based on the geotechnical bearing capacity theory. We applied this enhanced methodology to monitor groundwater-related vertical motions in both laboratory and field experiments. Corroborating extensometer recordings, acquired simultaneously, validated fiber optically determined displacements, suggesting microanchored DSS as an improved means for detecting and monitoring shallow subsurface strain profiles.


2015 ◽  
Vol 45 (4) ◽  
pp. 943-965 ◽  
Author(s):  
Peter Sutherland ◽  
W. Kendall Melville

AbstractWave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.


2014 ◽  
Vol 11 (14) ◽  
pp. 3721-3728 ◽  
Author(s):  
J. Y. Tang ◽  
W. J. Riley

Abstract. Representation of gaseous diffusion in variably saturated near-surface soils is becoming more common in land biogeochemical models, yet the formulations and numerical solution algorithms applied vary widely. We present three different but equivalent formulations of the dual-phase (gaseous and aqueous) tracer diffusion transport problem that is relevant to a wide class of volatile tracers in land biogeochemical models. Of these three formulations (i.e., the gas-primary, aqueous-primary, and bulk-tracer-based formulations), we contend that the gas-primary formulation is the most convenient for modeling tracer dynamics in biogeochemical models. We then provide finite volume approximation to the gas-primary equation and evaluate its accuracy against three analytical models: one for steady-state soil CO2 dynamics, one for steady-state soil CH4 dynamics, and one for transient tracer diffusion from a constant point source into two different sequentially aligned medias. All evaluations demonstrated good accuracy of the numerical approximation. We expect our result will standardize an efficient mechanistic numerical method for solving relatively simple, multi-phase, one-dimensional diffusion problems in land models.


2005 ◽  
Vol 51 (173) ◽  
pp. 307-312 ◽  
Author(s):  
Sarah B. Das ◽  
Richard B. Alley

AbstractSurface melting rarely occurs across most of the Antarctic ice sheet, away from the warmer coastal regions. Nonetheless, isolated melt features are preserved in the firn and ice in response to infrequent and short-lived melting events. An understanding of the formation and occurrence of these melt layers will help us to interpret records of past melt occurrences from polar ice cores such as the Siple Dome ice-core record from West Antarctica. A search in the near-surface firn in West Antarctica found that melt features are extremely rare, and consist of horizontal, laterally continuous, one to a few millimeter thick, ice layers with few air bubbles. The melt layers found date from the 1992/93 and 1991/92 summers. Field experiments to investigate changes in stratigraphy taking place during melt events reproduced melt features as seen in the natural stratigraphy. Melting conditions of varying intensity were created by passively heating the near-surface air for varying lengths of time inside a clear plastic hotbox. Melt layers formed due entirely to preferential flow and subsequent refreezing of meltwater from the surface into near-surface, fine-grained, crust layers. Continuous melt layers were formed experimentally when positive-degree-day values exceeded 1ºC-day, a value corresponding well with air-temperature records from automatic weather station sites where melt layers formed in the recent past.


2003 ◽  
Vol 773 ◽  
Author(s):  
Shalini Prasad ◽  
Mo Yang ◽  
Xuan Zhang ◽  
Yingchun Ni ◽  
Vladimir Parpura ◽  
...  

AbstractCharacterization of electrical activity of individual neurons is the fundamental step in understanding the functioning of the nervous system. Single cell electrical activity at various stages of cell development is essential to accurately determine in in-vivo conditions the position of a cell based on the procured electrical activity. Understanding memory formation and development translates to changes in the electrical activity of individual neurons. Hence, there is an enormous need to develop novel ways for isolating and positioning individual neurons over single recording sites. To this end, we used a 3x3 multiple microelectrode array system to spatially arrange neurons by applying a gradient AC field. We characterized the electric field distribution inside our test platform by using two dimensiona l finite element modeling (FEM) and determined the location of neurons over the electrode array. Dielectrophoretic AC fields were utilized to separate the neurons from the glial cells and to position the neurons over the electrodes. The neurons were obtained from 0-2-day-old rat (Sprague-Dawley) pups. The technique of using electric fields to achieve single neuron patterning has implications in neural engineering, elucidating a new and simpler method to develop and study neuronal activity as compared to conventional microelectrode array techniques.


2019 ◽  
Vol 41 (1) ◽  
pp. 5-45 ◽  
Author(s):  
Graham J. Hill

Abstract The polar regions are host to fundamental unresolved challenges in Earth studies. The nature of these regions necessitates the use of geophysics to address these issues, with electromagnetic and, in particular, magnetotelluric studies finding favour and being applied over a number of different scales. The unique geography and climatic conditions of the polar regions means collecting magnetotelluric data at high latitudes, which presents challenges not typically encountered and may result in significant measurement errors. (1) The very high contact resistance between electrodes and the surficial snow and ice cover (commonly MΩ) can interfere with the electric field measurement. This is overcome by using custom-designed amplifiers placed at the active electrodes to buffer their high impedance contacts. (2) The proximity to the geomagnetic poles requires verification of the fundamental assumption in magnetotellurics that the magnetic source field is a vertically propagating, horizontally polarised plane wave. Behaviour of the polar electro-jet must be assessed to identify increased activity (high energy periods) that create strong current systems and may generate non-planar contributions. (3) The generation of ‘blizstatic’, localised random electric fields caused by the spin drift of moving charged snow and ice particles that produce significant noise in the electric fields during periods of strong winds. At wind speeds above ~ 10 m s−1, the effect of the distortion created by the moving snow is broad-band. Station occupation times need to be of sufficient length to ensure data are collected when wind speed is low. (4) Working on glaciated terrain introduces additional safety challenges, e.g., weather, crevasse hazards, etc. Inclusion of a mountaineer in the team, both during the site location planning and onsite operations, allows these hazards to be properly managed. Examples spanning studies covering development and application of novel electromagnetic approaches for the polar regions as well as results from studies addressing a variety of differing geologic questions are presented. Electromagnetic studies focusing on near-surface hydrologic systems, glacial and ice sheet dynamics, as well as large-scale volcanic and tectonic problems are discussed providing an overview of the use of electromagnetic methods to investigate fundamental questions in solid earth studies that have both been completed and are currently ongoing in polar regions.


2019 ◽  
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Tvrtko Korbar ◽  
Ivica Sović

Abstract. Seismic-induced ground motion at a site is generally influenced by seismic source, propagation path and local site conditions. Over the last several decades, researchers have consistently asserted that for near site attenuation, the spectral parameter kappa is subject primarily to site conditions. In this research we estimated parameter kappa based on the acceleration amplitude spectrum of shear waves, from the selected recordings of local earthquakes from seismological stations situated in the western part of Croatia from the slope of the high-frequency part. The spatial distribution of individual kappa values is compared with the azimuthal distribution of earthquake epicentres, with Vs30 values and the published coda-Q values for each station, as well as with isoseismal maps for several stronger events in the investigated area, along with the geological features. The dextral shift of crustal segments and frontal thrust of the External Dinarides along the Kvarner fault zone has probably had an impact on the geometry of the kappa parameter contour lines. These results are important for gaining further insight into the attenuation of near-surface crust layers in the Northwestern External Dinarides and the associated Adriatic foreland, as well as in similar geotectonic settings.


Sign in / Sign up

Export Citation Format

Share Document