Rock heterogeneity at the centimeter scale, proxies for interfacial weakness, and rock strength-stress interplay from downhole ultrasonic measurements

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. D83-D95 ◽  
Author(s):  
Smaine Zeroug ◽  
Bikash K. Sinha ◽  
Ting Lei ◽  
John Jeffers

Analysis of data acquired with an ultrasonic rotating device lowered inside a vertical well of a highly laminated, kerogen-rich, carbonate source formation reveals centimeter-scale rock heterogeneities. The high-frequency (50–600 kHz) measurement used consists of a pulse-echo modality that yields a high-resolution (millimeter-scale) borehole shape and a pitch-catch modality with one transmitting and two receiving transducers that provide compressional (P) and shear (S) slownesses (depth-versus-azimuth) images estimated from signals propagating in the near-wellbore region as compressional head waves and pseudo-Rayleigh surface waves. The slownesses are compared with their counterparts estimated from a lower-frequency (1–15 kHz) sonic measurement logged in the same well interval. The sonic P and S logs are seen to average the centimeter-scale slowness spatial variation between compliant and stiff laminates at a scale larger than 30 cm (1 ft). This is also accompanied by a reduction in resolution of the slowness contrast, which markedly reduces the spectrum of rock-mechanical property variations that are estimated from the ultrasonic data. Further, ultrasonic images of the P and S slownesses and borehole acoustic caliper reveal a host of features associated with rock geomechanics in the near-wellbore and that inform on a first-order basis the interplay between rock strength and local stress regime, as affected by the lamination. The features include breakouts present in the stiffer limestone layers and their arrest at the intersection with the compliant siltstone layers, as well as azimuthal P and S slowness variations indicative of azimuthal stress concentrations, but without the appearance of breakouts. The ultrasonic borehole shape data also identify compliant thin layers that retract into the formation by amounts that are commensurate with their Young’s modulus, suggesting a proxy for detecting and characterizing thin-layer weakness in situ.

2018 ◽  
Vol 33 (2) ◽  
pp. 236-253 ◽  
Author(s):  
Taimoor A Khan ◽  
Saad Nauman ◽  
Zeeshan Asfar ◽  
M Ali Nasir ◽  
Zaffar M Khan

In this article, we have explored screen printing as a fast and reliable process for the deposition of nanocomposite layer on glass fiber-reinforced plastic (GFRP) substrate for in situ structural health monitoring. The screen-printed sensor comprised of a thermoplastic matrix (high density polystyrene) and a dispersed nanofiller (carbon nanoparticles). Notches of different sizes (2.5 mm and 4.0 mm) were introduced to study the response of sensors to an existing damage. Stress concentrations were plotted across the width and the sensor results were correlated with the simulated stress concentrations to evaluate the response of sensors with respect to local stress concentrations. It was found that the screen-printed sensors responded to the stress concentrations since the layers were deposited in the vicinity of notches. The gauge factors altered due to the presence of notches indicating sensor sensitivity to the preexisting damage and resultant stress concentrations.


2021 ◽  
Vol 83 (5) ◽  
Author(s):  
Tim I. Yilmaz ◽  
Fabian B. Wadsworth ◽  
H. Albert Gilg ◽  
Kai-Uwe Hess ◽  
Jackie E. Kendrick ◽  
...  

AbstractThe nature of sub-volcanic alteration is usually only observable after erosion and exhumation at old inactive volcanoes, via geochemical changes in hydrothermal fluids sampled at the surface, via relatively low-resolution geophysical methods or can be inferred from erupted products. These methods are spatially or temporally removed from the real subsurface and thus provide only indirect information. In contrast, the ICDP deep drilling of the Mt Unzen volcano subsurface affords a snapshot into the in situ interaction between the dacitic dykes that fed dome-forming eruptions and the sub-volcanic hydrothermal system, where the most recent lava dome eruption occurred between 1990 and 1995. Here, we analyse drill core samples from hole USDP-4, constraining their degree and type of alteration. We identify and characterize two clay alteration stages: (1) an unusual argillic alteration infill of fractured or partially dissolved plagioclase and hornblende phenocryst domains with kaolinite and Reichweite 1 illite (70)-smectite and (2) propylitic alteration of amphibole and biotite phenocrysts with the fracture-hosted precipitation of chlorite, sulfide and carbonate minerals. These observations imply that the early clay-forming fluid was acidic and probably had a magmatic component, which is indicated for the fluids related to the second chlorite-carbonate stage by our stable carbon and oxygen isotope data. The porosity in the dyke samples is dominantly fracture-hosted, and fracture-filling mineralization is common, suggesting that the dykes were fractured during magma transport, emplacement and cooling, and that subsequent permeable circulation of hydrothermal fluids led to pore clogging and potential partial sealing of the pore network on a timescale of ~ 9 years from cessation of the last eruption. These observations, in concert with evidence that intermediate, crystal-bearing magmas are susceptible to fracturing during ascent and emplacement, lead us to suggest that arc volcanoes enclosed in highly fractured country rock are susceptible to rapid hydrothermal circulation and alteration, with implications for the development of fluid flow, mineralization, stress regime and volcanic edifice structural stability. We explore these possibilities in the context of alteration at other similar volcanoes.


2021 ◽  
pp. 2100119
Author(s):  
Xinxiao Han ◽  
Wenda Hua ◽  
Yuqi Liu ◽  
Zhuo Ao ◽  
Dong Han
Keyword(s):  

2019 ◽  
Vol 7 (45) ◽  
pp. 25802-25807 ◽  
Author(s):  
Priyanka Manchanda ◽  
Stefan Chisca ◽  
Lakshmeesha Upadhyaya ◽  
Valentina-Elena Musteata ◽  
Mark Carrington ◽  
...  

Thin layers of a covalent organic framework (COF) have been synthesized on a flexible polymeric support using a new diffusion-induction method under ambient conditions in reaction times as short as 3 hours.


2014 ◽  
Vol 571 ◽  
pp. 437-441 ◽  
Author(s):  
Lennart Fricke ◽  
Tammo Böntgen ◽  
Jan Lorbeer ◽  
Carsten Bundesmann ◽  
Rüdiger Schmidt-Grund ◽  
...  

2021 ◽  
Author(s):  
Bobillier Gregoire ◽  
Bergfled Bastian ◽  
Gaume Johan ◽  
van Herwijnen Alec ◽  
Schweizer Jürg

<p>Dry-snow slab avalanche release is a multi-scale process starting with the formation of localized failure in a highly porous weak snow layer below a cohesive snow slab, which can be followed by rapid crack propagation within the weak layer. Finally, a tensile fracture through the slab leads to its detachment. About 15 years ago, the propagation saw test (PST) was developed. The PST is a fracture mechanical field test that provides information on crack propagation propensity in weak snowpack layers. It has become a valuable research tool to investigate the processes involved in crack propagation. While this has led to a better understanding of the onset of crack propagation, much less is known about the ensuing propagation dynamics. Here, we use the discrete element method to numerically simulate PSTs in 3D and analyze the fracture dynamics using a micro-mechanical approach. Our DEM model reproduced the observed PST behavior extracted from experimental analysis. We developed different indicators to define the crack tip that allowed deriving crack speed. Our results show that crack propagation in level terrain reaches a stationary speed if the snow column is long enough. Moreover, we define stress concentration sections. Their length evolution during crack propagation suggests the development of a steady-state stress regime. Slab and weak layer elastic modulus, as well as weak layer shear strength, are the key input parameters for modeling crack propagation; they affect stress concentrations, crack speed, and the critical length for the onset of crack propagation. The results of our sensitivity study highlight the effect of these mechanical parameters on the emergence of a steady-state propagation regime and consequences for dry-snow slab avalanche release. Our DEM approach opens the possibility for a comprehensive study on the influence of the snowpack mechanical properties on the fundamental processes for avalanche release.</p>


Sign in / Sign up

Export Citation Format

Share Document