Static and dynamic effective moduli of elastic-perfectly plastic granular aggregates under normal compression

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. MR185-MR194 ◽  
Author(s):  
Abdulla Kerimov ◽  
Gary Mavko ◽  
Tapan Mukerji ◽  
Jack Dvorkin

Based on an existing simplified theoretical model for the normal contact interaction between two elastic-perfectly plastic spherical particles, we derived explicit expressions for the static and dynamic normal and dynamic tangential contact stiffnesses of elastic-perfectly plastic two-particle combination at pre-yield, yield, and post-yield conditions of normal loading. We used “static stiffness” or “loading stiffness” to refer to the slope of the force-displacement curve during monotonically increasing load. The “dynamic stiffness” or “unloading stiffness” refers to the stiffness that controls the speed of infinitesimal strain elastic waves propagating through the contacts. The static and dynamic contact stiffnesses are compared with numerical modeling of a two-sphere combination using the finite-element method. Furthermore, we used the explicit expressions for contact stiffnesses with the commonly used statistical averaging scheme to derive the static and dynamic effective bulk and shear moduli of a dry, random packing of identical elastic-perfectly plastic spherical particles. Elastic contact/mechanics-based effective medium models are unable to model the growth of contact area between inelastic (e.g., plastic) particles under normal force, which results in inaccurate predictions of contact stiffnesses and effective moduli. Once the particle reaches the limit of elasticity with onset of plastic deformation (yielding), further loading of two elastic-perfectly plastic spherical particles leads to a larger contact area than for two elastic particles under the same normal loading. As a result, after yielding, the dynamic effective moduli become stiffer than the corresponding moduli in the elastic case, whereas the static effective moduli remain constant, rather than increasing as in the elastic case.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. Shankar ◽  
M. M. Mayuram

An axisymmetrical hemispherical asperity in contact with a rigid flat is modeled for an elastic perfectly plastic material. The present analysis extends the work (sphere in contact with a flat plate) of Kogut–Etsion Model and Jackson–Green Model and addresses some aspects uncovered in the above models. This paper shows the critical values in the dimensionless interference ratios (ω∕ωc) for the evolution of the elastic core and the plastic region within the asperity for different Y∕E ratios. The present analysis also covers higher interference ratios, and the results are applied to show the difference in the calculation of real contact area for the entire surface with other existing models. The statistical model developed to calculate the real contact area and the contact load for the entire surfaces based on the finite element method (FEM) single asperity model with the elastic perfectly plastic assumption depends on the Y∕E ratio of the material.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Andreas Goedecke ◽  
Randolf Mock

A set of finite element simulations was performed to analyze the creep behavior of an elastic–perfectly plastic hemisphere in contact with a rigid flat. This study focuses on the time-dependent stress relaxation of a fully plastic asperity. Assuming a Garofalo (hyperbolic sine) type material creep law, the asperity shows two distinct phases of relaxation. In the first phase, the asperity creeps with an accelerated creep rate and shows a contact area increase similar to that of a cylindrical geometry. In the second phase, no contact area change can be measured and the asperity creeps with a slower rate. Empirical evolution laws for the asperity creep behavior are presented, analyzing the influence of both material and geometrical parameters. The results are interpreted in terms of transient friction.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
A. Ovcharenko ◽  
I. Etsion

The contact area, friction force, and relative displacement evolution at the very early stage of fretting are investigated experimentally. Copper and steel spheres of various diameters are loaded against a hard sapphire flat by a range of normal loads deep into the elastic-plastic regime of deformation. A reciprocating tangential loading is then applied with a maximum loading below the static friction to avoid gross slip. Real-time and in situ direct measurements of the contact area, along with accurate measurements of the friction force and relative displacement, reveal substantial junction growth and energy dissipation mainly in the first loading cycle. The so-called “slip amplitude” is found to be attributed to residual tangential plastic deformation rather than to interfacial slip. Elastic shake-down is observed for the 2.5% hardening steel spheres while plastic shake-down is observed in the case of the elastic perfectly-plastic copper spheres.


2003 ◽  
Vol 70 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Chung-Jen Lu ◽  
Ming-Chang Kuo

Equations of rigid-body mechanics provide a means to predict the post-collision behavior without recourse to highly complex, detailed analysis of deformations during contact. Before the prediction can be completed, the coefficient of restitution, which relates the rebound velocity to the incident velocity, must be estimated properly. The coefficient of restitution depends on the surface topography in addition to the material properties and incident velocity. Recent investigations showed that surface topography can be characterized properly by fractal models. This paper proposes a normal contact model for a fractal surface in contact with a rigid smooth half-space. The fractal surface is constructed based on the Cantor set and composed of elastic-perfectly plastic material. Asymptotic continuous expressions for the load-displacement relations during loading and unloading are derived. Based on these results, we study the effects of surface roughness, material properties and incident velocity on the coefficient of restitution.


Author(s):  
Andrey Ovcharenko ◽  
Izhak Etsion

The contact area, friction force and relative displacement evolution at the very early stage of fretting are investigated experimentally. Copper and steel spheres of various diameters are loaded against a hard sapphire flat by a range of normal loads deep into the elastic-plastic regime of deformation. A reciprocating tangential loading is then applied with a maximum loading below the static friction to avoid gross slip. Real-time and in situ direct measurements of the contact area, along with accurate measurements of the friction force and relative displacement, reveal substantial junction growth and energy dissipation mainly in the first loading cycle. The so called “slip amplitude” is found to be attributed to residual tangential plastic deformation rather than to interfacial slip. Elastic shake-down is observed for the 2.5% hardening steel spheres while plastic shake-down is observed in the case of the elastic perfectly plastic copper spheres.


Author(s):  
GF WANG

In this paper, an incremental eqivalent contact model is developed for elastic-perfectly plastic solids with rough surfaces. The contact of rough surface is modeled by the accumulation of circular contacts with varying radius, which is estimated from the geometrical contact area and the number of contact patches. For three typical rough surfaces with various mechanical properties, the present model gives accurate predictions of the load-area relation, which are verified by direct finite element simulations. An approximately linear load-area relation is observed for elastic-plastic contact up to a large contact fraction of 15%, and the influence of yield stress is addressed.


1997 ◽  
Vol 64 (2) ◽  
pp. 383-386 ◽  
Author(s):  
C. Thornton

Based on a simplified theoretical model for the normal contact interaction of two elastic-perfectly plastic spheres, an analytical solution is provided for the coefficient of restitution. The solution is expressed in terms of the ratio of impact velocity to yield velocity rather than in terms of material properties such as the yield stress which is difficult to reliably ascertain for many materials.


Author(s):  
L-Y Li ◽  
C-Y Wu ◽  
C Thornton

The paper presents a theoretical model for the normal contact of a rigid sphere with an elastic-perfectly plastic half-space or an elastic-perfectly plastic sphere with a rigid wall. Formulae describing the force-displacement relationship for static contact problems and the coefficient of restitution for dynamic impact problems are derived. The present model can be considered as a modification of Johnson's model by using a more detailed pressure distribution function which is based on finite element analysis (PEA) results and considering the variation in the curvature of the contact surface during the contact interaction. In order to verify the theoretical model, finite element analyses are also conducted, and results are compared with those predicted by the model for both contact force-displacement relations and restitution coefficients. Good agreements between the model predictions and the FEA results are found.


2021 ◽  
pp. 1-19
Author(s):  
Xuan-Ming Liang ◽  
Yue Ding ◽  
Yan Duo ◽  
Weike Yuan ◽  
Gangfeng Wang

Abstract In this paper, an incremental equivalent contact model is developed for elastic-perfectly plastic solids with rough surfaces. The contact of rough surface is modeled by the accumulation of circular contacts with varying radius, which is estimated from the geometrical contact area and the number of contact patches. For three typical rough surfaces with various mechanical properties, the present model gives accurate predictions of the load-area relation, which are verified by direct finite element simulations. An approximately linear load-area relation is observed for elastic-plastic contact up to a large contact fraction of 15%, and the influence of yield stress is addressed.


2006 ◽  
Vol 129 (1) ◽  
pp. 40-59 ◽  
Author(s):  
Shaobiao Cai ◽  
Bharat Bhushan

Friction/stiction and wear are among the main issues in magnetic storage devices and microelectromechanical systems/nanoelectromechanical systems having contact interfaces. A numerical model which simulates the actual contact situations of those devices is needed to obtain optimum design parameters including materials with desired mechanical properties, layers thickness, and to predict and analyze the contact behavior of devices in operation. This study presents a first attempt to develop a numerical three-dimensional multilayered elastic–perfectly plastic rough solids model to investigate the contact behavior under combined normal loading and tangential traction. Energy method is used to formulate the problem, and variational principle in which the contact pressure distributions are those which minimize the total complementary potential energy is applied. A quasi-Newton method is used to find the minimum, and fast Fourier transform is applied to enhance the computation efficiency. In-depth analyses of the effects of friction force, layers properties, and layers thickness to contact statistics and stresses are performed. The optimum layer parameters which decrease friction/stiction and wear are investigated and identified.


Sign in / Sign up

Export Citation Format

Share Document