Experimental Quantification of the Evolution of the Static Mechanical Properties of Tight Sedimentary Rocks during Increasing-amplitude Load and Unload Cycling

Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Yang Wang ◽  
Luanxiao Zhao ◽  
De-Hua Han ◽  
Qianqian Wei ◽  
Yonghao Zhang ◽  
...  

Understanding the linearly and nonlinearly elastic behaviors of tight reservoir rocks is crucial for numerous geophysical and geomechanical applications in hydrocarbon exploration and production, geological repositories for greenhouse gases, and geothermal energy exploitation. We perform a suite of triaxial load and unload cycling tests with increasing stress amplitudes on three tight sedimentary rocks to explore the evolution of their static mechanical properties (Young’s modulus and Poisson’s ratio). We intend to depict the transition from linear to nonlinear elasticity by combining static measurements with dynamic measurements. The experimental results suggest that static mechanical properties increase upon load stress cycling but decrease upon unload stress cycling. Upon the increasing-amplitude unload cycling, static mechanical properties gradually decrease from values approaching dynamic properties to values closer to static properties upon load cycling. By quadratically fitting the static mechanical properties as functions of the strain amplitude in the process of unload cycling, we define a characteristic strain amplitude of about 5 × 10−5 to distinguish the linearly elasticity-dominated and nonlinearly elasticity-dominated behaviors for three tight rocks. Such transitional behavior in tight sedimentary rocks can be microscopically explained by the gradual activation of friction-controlled sliding from the beginning of the cyclic stress unload. These observations provide direct experimental evidence of the transition from linear to nonlinear elasticity for tight sedimentary rocks during the laboratory static measurements, which will facilitate understanding of the dynamic-static parameter correlation and the modeling of rock deformations in geoscience or geoengineering applications.

Geophysics ◽  
2020 ◽  
pp. 1-62
Author(s):  
Yang Wang ◽  
Luanxiao Zhao ◽  
de-hua Han ◽  
Abhijit Mitra ◽  
Hui Li ◽  
...  

Understanding the relationship between dynamic and static mechanical properties of organic-rich shales is crucial for successful in-situ stress profile prediction and hydraulic fracturing stimulation in unconventional reservoirs. However, the relationship between dynamic and static properties remains ambiguous, considering the complex rock microstructure and sub-surface stress environment. We report pseudo-triaxial tests on a pair of outcrop Eagle Ford shale plugs, with the axial load applied perpendicular and parallel to bedding planes, to investigate the effects of intrinsic anisotropy and anisotropic stress on dynamic-static relationships. The bedding-parallel Young's modulus is larger than the bedding-normal one dynamically and statically, whereas there exist complex relations among three static Poisson's ratios, which are attributed to the intrinsic anisotropy induced by the lenticular texture and finely laminated alignment of kerogen. Along with a stress increment, static tests respond to superpositions of the elastic, viscoelastic, and non-elastic properties, whereas dynamic tests, with more than two orders of magnitude smaller strain amplitude, only reflect the elastic properties of rocks. As a result, the static properties characteristically exhibit more stress dependence than the dynamic properties. Moreover, the evolutions of static properties, especially two static Poisson's ratios in the horizontal plug, are significantly influenced by the applied stress orientation with respect to the bedding plane. Lastly, we calculate four independent stiffnesses using the five static mechanical parameters with the assumption of transverse isotropy to compare with those calculated from ultrasonic velocities at different stress levels. Finally, when the deviatoric stress is approximately 20 MPa, static parameters derived from stress loading, unloading, and reloading almost intersect together. At this stress level, dynamic and static stiffnesses demonstrate a reasonable correlation with the fitting coefficient of approximately 1.4.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


Author(s):  
Antao Deng ◽  
Bin Ji ◽  
Xiang Zhou

A new geometric design method for foldcores based on the generalized Resch patterns that allow face-to-face bonding interfaces between the core and the skins is proposed. Based on the geometric design method, a systematic numerical investigation on the quasi-static mechanical properties of the generalized Resch-based foldcores made of carbon fiber-reinforced plastic (CFRP) woven fabrics subjected to compression and shear loads is performed using the finite element method that is validated by experiments. The relationships between the mechanical properties and various geometric parameters as well as laminate thickness of the generalized Resch-based CFRP foldcores are revealed. Additionally, the mechanical properties of the generalized Resch-based CFRP foldcore are compared to those of the standard Resch-based, Miura-based foldcore, the honeycomb core, and the aluminum counterpart. It is found that the generalized Resch-based CFRP foldcore performs more stably than the honeycomb core under compression and has higher compressive and shear stiffnesses than the standard Resch-based and Miura-based foldcores and absorbs as nearly twice energy under compression as the Miura-based foldcore does. When compared with the aluminum counterpart, the CFRP model has higher weight-specific stiffness and strength but lower energy absorption capacity under shearing. The results presented in this paper can serve as the useful guideline for the design of the generalized Resch-based composite foldcore sandwich structures for various performance goals.


2014 ◽  
Vol 891-892 ◽  
pp. 1639-1644 ◽  
Author(s):  
Kazutaka Mukoyama ◽  
Koushu Hanaki ◽  
Kenji Okada ◽  
Akiyoshi Sakaida ◽  
Atsushi Sugeta ◽  
...  

The aim of this study is to develop a statistical estimation method of S-N curve for iron and structural steels by using their static mechanical properties. In this study, firstly, the S-N data for pure iron and structural steels were extracted from "Database on fatigue strength of Metallic Materials" published by the Society of Materials Science, Japan (JSMS) and S-N curve regression model was applied based on the JSMS standard, "Standard Evaluation Method of Fatigue Reliability for Metallic Materials -Standard Regression Method of S-N Curve-". Secondly, correlations between regression parameters and static mechanical properties were investigated. As a result, the relationship between the regression parameters and static mechanical properties (e.g. fatigue limit E and static tensile strength σB) showed strong correlations, respectively. Using these correlations, it is revealed that S-N curve for iron and structural steels can be predicted easily from the static mechanical properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Quang Nguyen Trong ◽  
Hung Dang Viet ◽  
Linh Nguyen Pham Duy ◽  
Chuong Bui ◽  
Duong Duc La

Selection of a suitable thermal aging process could render desirable mechanical properties of the rubbers or blended rubbers. In this work, the effect of the aging processes on the mechanical properties and activation energies of natural rubbers (NR) and NR/chloroprene rubbers (CR) blends with low CR contents (5–10%) was investigated. Three aging processes including heat aging (at 110°C for 22 hours), mechanical aging (under dynamic loading to 140% strain for 16000 cycles), and complex aging (heat and mechanical aging) were studied. The results revealed that the compatibility of CR in natural rubber matrix had a significant effect on the dynamic properties of the blended rubber and negligible effect on the static properties. The changes in activation energies of the blended rubber during aging processes were calculated using Arrhenius relation. The calculated changes (ΔUc, ΔUd, and ΔUT) in activation energies were consistent with the results of mechanical properties of the blended rubber. Interestingly, the change in activation energies using complex aging conditions (ΔUc) was mostly equal to the total changes in activation energies calculated separately from heat aging (ΔUT) and mechanical aging (ΔUd) conditions. This indicates that, in complex aging conditions, the heat and dynamic loading factors act independently on the properties of the blended rubber.


2020 ◽  
Vol 33 ◽  
pp. 3737-3745
Author(s):  
S. Seralathan ◽  
Ch. Pavan Veera Sai Ganesh ◽  
Bhanu Prakash Reddy Venganna ◽  
N. Sai Srinivas ◽  
B. Lokesh Chowdary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document