scholarly journals Machine learning in the diagnosis of Myocardial Infarction with Non-Obstructive Coronary Arteries

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms

Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


2020 ◽  
Vol 8 (5) ◽  
pp. 5353-5362

Background/Aim: Prostate cancer is regarded as the most prevalent cancer in the word and the main cause of deaths worldwide. The early strategies for estimating the prostate cancer sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered informational collection from kaggle and we have done pre-processing tasks for missing values .We have three missing data values in compactness attribute and two missing values in fractal dimension were replaced by mean of their column values .The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a prostate cancer disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting prostate cancer disease. Results: The machine learning algorithms under study were able to predict prostate cancer disease in patients with accuracy between 70% and 90%. Conclusions: It was shown that Logistic Regression and Random Forest both has better Accuracy (90%) when compared to different Machine-learning Algorithms.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012045
Author(s):  
Aimin Li ◽  
Meng Fan ◽  
Guangduo Qin

Abstract There are many traditional methods available for water body extraction based on remote sensing images, such as normalised difference water index (NDWI), modified NDWI (MNDWI), and the multi-band spectrum method, but the accuracy of these methods is limited. In recent years, machine learning algorithms have developed rapidly and been applied widely. Using Landsat-8 images, models such as decision tree, logistic regression, a random forest, neural network, support vector method (SVM), and Xgboost were adopted in the present research within machine learning algorithms. Based on this, through cross validation and a grid search method, parameters were determined for each model.Moreover, the merits and demerits of several models in water body extraction were discussed and a comparative analysis was performed with three methods for determining thresholds in the traditional NDWI. The results show that the neural network has excellent performances and is a stable model, followed by the SVM and the logistic regression algorithm. Furthermore, the ensemble algorithms including the random forest and Xgboost were affected by sample distribution and the model of the decision tree returned the poorest performance.


2018 ◽  
Author(s):  
Nazmul Hossain ◽  
Fumihiko Yokota ◽  
Akira Fukuda ◽  
Ashir Ahmed

BACKGROUND Predictive analytics through machine learning has been extensively using across industries including eHealth and mHealth for analyzing patient’s health data, predicting diseases, enhancing the productivity of technology or devices used for providing healthcare services and so on. However, not enough studies were conducted to predict the usage of eHealth by rural patients in developing countries. OBJECTIVE The objective of this study is to predict rural patients’ use of eHealth through supervised machine learning algorithms and propose the best-fitted model after evaluating their performances in terms of predictive accuracy. METHODS Data were collected between June and July 2016 through a field survey with structured questionnaire form 292 randomly selected rural patients in a remote North-Western sub-district of Bangladesh. Four supervised machine learning algorithms namely logistic regression, boosted decision tree, support vector machine, and artificial neural network were chosen for this experiment. A ‘correlation-based feature selection’ technique was applied to include the most relevant but not redundant features into the model. A 10-fold cross-validation technique was applied to reduce bias and over-fitting of the data. RESULTS Logistic regression outperformed other three algorithms with 85.9% predictive accuracy, 86.4% precision, 90.5% recall, 88.1% F-score, and AUC of 91.5% followed by neural network, decision tree and support vector machine with the accuracy rate of 84.2%, 82.9 %, and 80.4% respectively. CONCLUSIONS The findings of this study are expected to be helpful for eHealth practitioners in selecting appropriate areas to serve and dealing with both under-capacity and over-capacity by predicting the patients’ response in advance with a certain level of accuracy and precision.


The first step in diagnosis of a breast cancer is the identification of the disease. Early detection of the breast cancer is significant to reduce the mortality rate due to breast cancer. Machine learning algorithms can be used in identification of the breast cancer. The supervised machine learning algorithms such as Support Vector Machine (SVM) and the Decision Tree are widely used in classification problems, such as the identification of breast cancer. In this study, a machine learning model is proposed by employing learning algorithms namely, the support vector machine and decision tree. The kaggle data repository consisting of 569 observations of malignant and benign observations is used to develop the proposed model. Finally, the model is evaluated using accuracy, confusion matrix precision and recall as metrics for evaluation of performance on the test set. The analysis result showed that, the support vector machine (SVM) has better accuracy and less number of misclassification rate and better precision than the decision tree algorithm. The average accuracy of the support vector machine (SVM) is 91.92 % and that of the decision tree classification model is 87.12 %.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 400
Author(s):  
Ghazal Farhani ◽  
Yue Zhou ◽  
Patrick Danielson ◽  
Ana Luisa Trejos

Many modern jobs require long periods of sitting on a chair that may result in serious health complications. Dynamic chairs are proposed as alternatives to the traditional sitting chairs; however, previous studies have suggested that most users are not aware of their postures and do not take advantage of the increased range of motion offered by the dynamic chairs. Building a system that identifies users’ postures in real time, as well as forecasts the next few postures, can bring awareness to the sitting behavior of each user. In this study, machine learning algorithms have been implemented to automatically classify users’ postures and forecast their next motions. The random forest, gradient decision tree, and support vector machine algorithms were used to classify postures. The evaluation of the trained classifiers indicated that they could successfully identify users’ postures with an accuracy above 90%. The algorithm can provide users with an accurate report of their sitting habits. A 1D-convolutional-LSTM network has also been implemented to forecast users’ future postures based on their previous motions, the model can forecast a user’s motions with high accuracy (97%). The ability of the algorithm to forecast future postures could be used to suggest alternative postures as needed.


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


Sign in / Sign up

Export Citation Format

Share Document