Assessment of the transport mechanism at a hydrocarbon spill site using geophysical, geologic, and geotechnical techniques

2015 ◽  
Vol 3 (4) ◽  
pp. SAB1-SAB7 ◽  
Author(s):  
Esther Babcock ◽  
Chris Nettels ◽  
Peter Beardsley

An accidental hydrocarbon release into a residential water well provides a case study for an assessment of the transport mechanism of a hydrocarbon in an alluvial depositional geologic setting. Due to the failure of initial results to recover the injected hydrocarbon in nearby wells, we collected ground-penetrating radar (GPR) data, soil samples, and soil conductivity logs throughout the site with the following objectives: (1) to understand the geologic setting, and (2) to identify the migratory path of the contaminant in the subsurface. Integrated interpretation of the GPR data, soil samples, and the soil conductivity logs provided evidence that the spilled hydrocarbon migrated against the direction of the dominant groundwater gradient but instead moved upward along dipping layers characteristic of the meandering river system. These results demonstrated that at a contaminated site having complex stratigraphy, traditional methods of characterization (such as monitoring wells) may fail, and the judicious use of geophysical and geotechnical tools may be able to provide insight into the mechanisms for the fate and transport of the contamination.

2016 ◽  
Vol 51 ◽  
pp. 11-26 ◽  
Author(s):  
Ashok Sigdel ◽  
Tetsuya Sakai

Fluvial sediments of the Siwalik successions in the Himalayan Foreland Basin are one of the most important continental archives for the history of Himalayan tectonics and climate change during the Miocene Period. This study reanalyzes the fluvial facies of the Siwalik Group along the Karnali River, where the large paleo-Karnali River system is presumed to have flowed. The reinterpreted fluvial system comprises fine-grained meandering river (FA1), flood-flow dominated meandering river with intermittent appearance of braided rivers (FA2), deep and shallow sandy braided rivers (FA3, FA4) to gravelly braided river (FA5) and finally debris-flow dominated braided river (FA6) facies associations, in ascending order. Previous work identified sandy flood-flow dominated meandering and anastomosed systems, but this study reinterprets these systems as a flood-flow dominated meandering river system with intermittent appearance of braided rivers, and a shallow sandy braided system, respectively. The order of the appearance of fluvial depositional systems in the Karnali River section is similar to those of other Siwalik sections, but the timing of the fluvial facies changes differs. The earlier appearance (3-4 Ma) of the flood-flow dominated meandering river system in the Karnali River section at about 13.5 Ma may have been due to early uplift of the larger catchment size of the paleo-Karnali River which may have changed the precipitation pattern i.e. intensification of the Indian Summer Monsoon. The change from a meandering river system to a braided river system is also recorded 1 to 3 Ma earlier than in other Siwalik sections in Nepal. Differential and diachronous activities of the thrust systems could be linked to change in catchment area as well as diachronous uplift and climate, the combination of which are major probable causes of this diachronity.


2013 ◽  
Vol 16 ◽  
pp. 53-64 ◽  
Author(s):  
Dev Kumar Syangbo ◽  
Naresh Kazi Tamrakar

Thick sedimentary sequence deposited in the foreland basin of the Nepal Himalaya is represented by the Siwalik Group. The Siwalik Group is well exposed in the Samari-Sukaura River area. The present study is focused in southern portion of the MBT around the Samari-Sukaura area for its depositional environment. The Middle Siwaliks of the Sukaura Road sections is overlained by the Lower Siwaliks which is separated by the Karki Khola Thrust. Extension of the Lower Siwaliks in the Jyamire Khola and the Bundal Khola becomes wider in the eastern Zone. Repetition of the Lower Siwaliks along the southern margin of the MBT is recognized. Depending on lithofacies assemblage and facies analysis, the two broad facies assemblages FA1 and FA2 have been distinguished. FA1 shows SB, FF, LA, LS and CH architectural elements and is interpreted as a product of the fine-grained meandering river system. FA2 shows SB, FF, LA, DA and CH architectural elements and is interpreted as a product of sandy mixed-load meandering river system. DOI: http://dx.doi.org/10.3126/bdg.v16i0.8884   Bulletin of the Department of Geology Vol. 16, 2013, pp. 53-64


EKSPLORIUM ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 29
Author(s):  
Heri Syaeful ◽  
Adi Gunawan Muhammad

ABSTRAKKegiatan karakterisasi material bawah permukaan penyusun pondasi tapak merupakan bagian dari studi tapak instalasi nuklir. Karakterisasi dilakukan dengan berbagai metode, diantaranya pemahaman tentang sistem pengendapan formasi batuan. Sebagai bagian dari metode interpretasi lingkungan pengendapan, analisis pemodelan fasies berdasarkan elektrofasies memberikan informasi yang cepat mengenai sistem pengendapan suatu formasi batuan. Metodologi yang digunakan adalah dengan interpretrasi log sinar gamma (log GR) menggunakan korelasi relatif antara variasi bentuk log dan fasies sedimentasi. Berdasarkan analisis diketahui Formasi Bojongmanik terbentuk pada lingkungan marine-lagoonal dengan pengaruh gelombang sangat rendah. Log GR yang menunjukan bentuk funnel, bergerigi dan simetris, mengindikasikan fasies shoreface, lagoon, dan tidal point bar. Arah sedimentasi, cekungan, dan suplai pada pengendapan sedimen Formasi Bojongmanik diinterpretasikan relatif ke utara. Formasi Serpong diendapkan pada sistem sungai bermeander dan tersusun atas endapan point bar, crevasse splay dan floodplain. Hasil analisis ini diharapkan dapat menjadi panduan dalam analisis lanjutan terkait karakterisasi material pondasi. ABSTRACTThe activity of subsurface material composing site foundation characterization is part of nuclear installation siting study. Characterization conducted by several methods, such as understanding the depositional environment of rock formations. As a segment of depositional environment interpretation method, facies model analysis based on electrofacies provides quicker information on depositional system of rock formation. Methodology applied is gamma ray log (log GR) interpretation using relative correlation between log shape variation and sedimentation facies. Based on the analysis, Bojongmanik Formation was deposited on marine-lagoonal environment with very low wave influence. Log GR that shows shape of funnel, serrated, and symmetry, indicate shoreface, lagoon, and tidal point bar facies. The direction of sedimentation, basin, and supply of Bojongmanik Formation interpreted relatively to the north. Serpong Formation deposited on meandering river system, and composed of point bar deposit, crevasse splay, and floodplain deposit. The result of analysis is expected to be guidance in further analysis related to the characterization of foundation materials.


2020 ◽  
Vol 55 (1) ◽  
pp. 1-26
Author(s):  
Dirk M. Rasmussen ◽  
Brady Z. Foreman ◽  
Henry C. Fricke ◽  
Kathryn Snell ◽  
Lindsey Gipson ◽  
...  

ABSTRACT Sedimentary basins throughout the North American Western Interior contain a record of Late Cretaceous through Eocene deposition related to the Laramide orogeny. The typical stratigraphic progression includes an uppermost Cretaceous fluvio-deltaic geologic formation that is unconformably overlain by an alluvial or paludal Paleocene geologic formation. The Paleocene unit is usually characterized by drab overbank facies, and overlain by an interval of amalgamated fluvial sand bodies. The overlying Eocene geologic units are characterized by red bed overbank facies. These major stratigraphic changes have been variably linked to long-wavelength dynamic subsidence, local uplift, and climatic shifts. Herein, we evaluate the depositional history of the Huerfano Basin of south-central Colorado in this overarching context. Our study presents a detailed lithofacies analysis of the Poison Canyon, Cuchara, and Huerfano Formations integrated with a new bulk (1) organic carbon isotope record, n = 299 measurements (Data Supplement 1A); and (2) magnetic record, n = 247 measurements (Data Supplement 1B). We interpret that the Paleocene Poison Canyon Formation was deposited by a braided or coarse-grained meandering river system with relatively poorly drained floodplains. The Eocene Huerfano Formation was likely deposited by a coarse-grained meandering river system with a comparatively well-drained floodplain. This pattern mirrors other Laramide basins, and is likely related to a regional drying pattern linked to long-term warming during the early Paleogene. Age of the intervening Cuchara Formation is poorly resolved, but is an anomalously thick and coarse-grained fluvial unit, with evidence for extensive reworking of floodplain deposits and a moderate coarsening-upward pattern. The Cuchara Formation is associated with magnetic trends that suggest greater oxidation and weathering, and greater variability in rainfall patterns, as well as a subtle negative shift in carbon isotope values. This pattern indicates a period of widespread progradation within the basin, potentially related to a major Laramide uplift event that affected Colorado’s Wet Mountains, Front Range, and Sangre de Cristo Mountains.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2404
Author(s):  
Robert Lenhard ◽  
John Rayner ◽  
J. García-Rincón

Knowledge of subsurface light nonaqueous phase liquid (LNAPL) saturation is important for developing a conceptual model and a plan for addressing LNAPL contaminated sites. Investigators commonly predict LNAPL mobility and potential recoverability using information such as LNAPL physical properties, subsurface characteristics, and LNAPL saturations. Several models exist that estimate the LNAPL specific volume and transmissivity from fluid levels in monitoring wells. Commonly, investigators use main drainage capillary pressure–saturation relations because they are more frequently measured and available in the literature. However, main drainage capillary pressure–saturation relations may not reflect field conditions due to capillary pressure–saturation hysteresis. In this paper, we conduct a preliminary test of a recent analytical model that predicts subsurface LNAPL saturations, specific volume, and transmissivity against data measured at a LNAPL contaminated site. We call our test preliminary because we compare only measured and predicted vertical LNAPL saturations at a single site. Our results show there is better agreement between measured and predicted LNAPL saturations when imbibition capillary pressure–saturation relations are employed versus main drainage capillary pressure–saturation relations. Although further testing of the model for different conditions and sites is warranted, the preliminary test of the model was positive when consideration was given to capillary pressure–saturation hysteresis, which suggests the model can yield reasonable predictions that can help develop and update conceptual site models for addressing subsurface LNAPL contamination. Parameters describing capillary pressure–saturation relations need to reflect conditions existing at the time when the fluid levels in a well are measured.


2013 ◽  
Vol 17 (2) ◽  
pp. 519-531 ◽  
Author(s):  
J. Igel ◽  
T. Günther ◽  
M. Kuntzer

Abstract. Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.


Author(s):  
Yuniarti Yuskar ◽  
Dewandra Bagus Eka Putra ◽  
Muhammad Revanda

The study area is located in some floodplains of meandering river environment along the Kampar River, Rumbio. Typical morphology of meandering river that found in this area can be classified as stream channel, floodplain, abandoned channel, and sand bars deposit. Meandering river system carries sediment supply by suspended and bed - load (mixed load) in conjunction with low energy into a particular characteristic on sediment deposition. This study aims to determine the characteristics of the sediments, changes in vertical and lateral spread of sediment deposition on the floodplain environment. This study conducted by field survey using a hand auger of 1.5m - 4m depth and trenching which is a layer that has been exposed of 1-2 meters depth. Further analysis had been carried out using granulometri method and core data analysis to determine the characteristics and depositional facies. Sediment deposit that formed along the Kampar River is the result of the main channel migration of Kampar River. The characteristic of quaternary sediment facies is coarse to gravelly sand on the bottom followed by fine to very fine sand with pattern fining upwards and silt to clay and abundant terrestrial organic matter at the uppermost layer. Depositional facies are determined based on the characteristics of sediment facies which can be grouped into a stream channel, oblique accretion deposits, sand bars and overbank deposits.


2018 ◽  
Author(s):  
A. A. Ayandele

AbstractThe potential of six microorganisms (Pseudomonas aeruginosa, Micrococcus sp, Flavobacterium sp, Rhizopus sp, Penicillium sp and Fusarium sp) isolated from hydrocarbon contaminated site were evaluated for their biodegradation ability. The soil samples were contaminated with 5% (w/v) of spent engine oil and the rate of biodegradation of the oil was studied for a period of 10weeks under greenhouse experiment. The total heterotrophic bacteria count (THBC), total hydrocarbon degrading bacteria count (THDBC), physicochemical and heavy metals properties of the soil samples and Total Petroleum Hydrocarbon (TPH) were determined after treatment with test organisms. THBC and THDBC ranged from 0.175 to 0.280 CFUg-1 and 0.47 CFUg-1 respectively for the control plot, while THBC is ranging from 0.197 to 0.275 CFUg-1 and THDBC was 0.180 to 0. 473 CFUg-1 for the contaminated plot. There was a slight increase in the pH value of the contaminated soil sample and the treated soil samples as the experimental weeks increased. The results obtained showed a significant decrease (at p ≤ 0.05) in the nutrients content of the soil samples. There was an increase from 1.09 in the control to 15.5% in the content of organic matter after contamination and from 1.88% to 26.8% in the % of organic matter too. There was a significant reduction (at p ≤ 0.05) in the concentration of Fe, Zn, Pb, Cd, Cu, Cr and Ni after 10 weeks of incubation with the tested organisms. Plant growth in the treated contaminated soil samples ranged from 32.6cm to 38.6cm, while that of the control 1 (Uncontaminated soil) was 51.2cm and 19.7cm high was observed in the Control 2 (contaminated untreated soil) after 22 days of the experiment. The TPH degradation (% loss) ranged from 79.7 to 89. 2% after 10 weeks of treatment. P. aeruginosa had the highest level of degradation (89.2%), while Micrococcus sp and Rhizopus sp had the least degradation at 79.9%.All the microorganisms used in this study had the abilities to remediating soil contaminated with spent engine oil and the remediated soil samples were able to support the growth of Zea mays at 5% (w/v) level of contamination.


2017 ◽  
pp. 1001-1008
Author(s):  
Ana Paola Vilches ◽  
Dan Bylund ◽  
Anders Jonsson

The contamination of soils by petroleum hydrocarbons, such as diesel fuel, has since many years been a serious environmental problem. Treatment of contaminated areas is a concern for governments and environmental authorities in several countries and efforts have been done with the purpose to eliminate this problem. Different methods have been tested and today the most common technique involves the excavation and transportation of contaminated soil to special treatment facilities. In earlier studies we have demonstrated the effect of adding organic amendments, such as fermented whey, on the biodegradation of n-alkanes in diesel contaminated soil. Non-fermented sweet whey also proved significantly to enhance the biodegradation of an aromatic substance (phenanthrene) in contaminated soil. The current paper presents the results of an in-situ field test at a former gas station in the north of Sweden. In parallel to the field study, biodegradation profiles were monitored under controlled laboratory conditions by taking soil samples from the contaminated site and spike them with diesel fuel. The experiments were carried out by adding whey and mineral nutrients (NPK) to the test area and to the laboratory samples, and monitor the degradation of hydrocarbons by gas chromatographic analysis of extracted soil samples. Significant effects on the degradation rates were achieved in the laboratory tests. For the in-situ test, however, no such positive effects could be registered.


Sign in / Sign up

Export Citation Format

Share Document