The Relative Vascularity of Different Areas of the Mammalian Brain

1937 ◽  
Vol 83 (346) ◽  
pp. 510-511 ◽  
Author(s):  
A. Colin P. Campbell

Though many of the earlier workers made statements based on general impressions from injected preparations about the relative vascularity of different parts of the brain, only comparatively recently has an attempt been made to measure and express numerically the capillary development in different areas, by methods similar to those used by Krogh in studying the vascularity of muscle. Craigie has made an extensive study of the rat brain by such methods, Cobb, and Cobb and Talbot have investigated certain areas of the rabbit brain, and Dunning and Wolf certain parts of the nervous system of the cat. In the present paper a personal investigation (undertaken at the suggestion of Dr. Cobb) is reported, comparing the basal ganglia, cerebral and cerebellar cortex of the cat as regards capillary vascularity. The capillaries were demonstrated by Indian ink injection, and results expressed in millimetres of capillary per cubic millimetre of tissue. Substantiating observations were made on similar areas of monkey and human brains, but without attempting accurate measurement as in the cat material.

The fate of uniformly 14 C labelled glucose has been followed by a quantitative application of the radio paper-chromatographic technique in different parts of the rabbit brain-hypo­-thalamus medialis anterior, hypothalamus medialis posterior, hypothalamus lateralis anterior, cerebral cortex, cerebellar cortex—and in the optic chiasma. Qualitatively the metabolic pattern of glucose was similar in all the different parts of the brain which were studied. The glucose disappearing from the medium after 60 min of incubation was accounted for as lactic acid, CO 2 , alanine, aspartic acid, glutamic acid, γ -aminobutyric acid and glutamine. However, in the cerebral cortex significantly greater quantities of alanine, aspartic acid, glutamic acid and glutamine were found than in any of the other tissues. The hypothalamus formed more γ -aminobutyric acid from glucose than the cerebral and cerebellar cortex. The inclusion of potassium in the medium augmented the oxygen uptake and the production of radioactive glutamine in all the different parts of the brain and the production of radioactive CO 2 in the cerebral cortex. On the other hand, the presence of potassium diminished the production of radioactive CO 2 in the hypothalamus but had no effect on CO 2 production in the cerebellar cortex.


Author(s):  
J. Eric Ahlskog

As a prelude to the treatment chapters that follow, we need to define and describe the types of problems and symptoms encountered in DLB and PDD. The clinical picture can be quite varied: problems encountered by one person may be quite different from those encountered by another person, and symptoms that are problematic in one individual may be minimal in another. In these disorders, the Lewy neurodegenerative process potentially affects certain nervous system regions but spares others. Affected areas include thinking and memory circuits, as well as movement (motor) function and the autonomic nervous system, which regulates primary functions such as bladder, bowel, and blood pressure control. Many other brain regions, by contrast, are spared or minimally involved, such as vision and sensation. The brain and spinal cord constitute the central nervous system. The interface between the brain and spinal cord is by way of the brain stem, as shown in Figure 4.1. Thought, memory, and reasoning are primarily organized in the thick layers of cortex overlying lower brain levels. Volitional movements, such as writing, throwing, or kicking, also emanate from the cortex and integrate with circuits just below, including those in the basal ganglia, shown in Figure 4.2. The basal ganglia includes the striatum, globus pallidus, subthalamic nucleus, and substantia nigra, as illustrated in Figure 4.2. Movement information is integrated and modulated in these basal ganglia nuclei and then transmitted down the brain stem to the spinal cord. At spinal cord levels the correct sequence of muscle activation that has been programmed is accomplished. Activated nerves from appropriate regions of the spinal cord relay the signals to the proper muscles. Sensory information from the periphery (limbs) travels in the opposite direction. How are these signals transmitted? Brain cells called neurons have long, wire-like extensions that interface with other neurons, effectively making up circuits that are slightly similar to computer circuits; this is illustrated in Figure 4.3. At the end of these wire-like extensions are tiny enlargements (terminals) that contain specific biological chemicals called neurotransmitters. Neurotransmitters are released when the electrical signal travels down that neuron to the end of that wire-like process.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Cory J. White ◽  
Jieun Lee ◽  
Joseph Choi ◽  
Tiffany Chu ◽  
Susanna Scafidi ◽  
...  

ABSTRACT The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B−/−). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.


Endocrinology ◽  
2011 ◽  
Vol 152 (1) ◽  
pp. 223-235 ◽  
Author(s):  
Anne T. M. Konkle ◽  
Margaret M. McCarthy

Abstract The prevailing view of sexual differentiation of mammalian brain is that androgen synthesized in the fetal and neonatal testis and aromatized centrally during a perinatal sensitive period is the sole source of brain estradiol and the primary determinant of sex differences. Subregions of the diencephalon are among the most sexually dimorphic in the brain, and there are well-established sex differences in the amount of testosterone and estradiol measured in the hypothalamus and preoptic area during the perinatal period. We previously reported unexpectedly high estradiol in the hippocampus and cortex of both male and female newborn rat. This prompted a thorough investigation of the developmental profile of steroids in the rat brain using RIA to quantify the level of estradiol, testosterone, and dihydrotestosterone in discrete subregions of the brain from embryonic d 19 to adulthood. Plasma estradiol levels from individual animals were assessed when sufficient sample was available. A significant sex difference in hypothalamic testosterone prior to birth was consistent with previous findings. Postnatally, there was a distinct pattern of changing steroid concentrations in each brain region, and these were unrelated to circulating steroid. Removal of the gonads and adrenals at birth did not significantly reduce steroids in any brain region assayed 3 d later. Aromatase activity was detectable in all brain areas at birth, and the difference in activity level paralleled the observed regional differences in estradiol content. Based on these findings, we propose that steroidogenesis in the brain, independent of peripherally derived precursors, may play a critical role in mammalian brain development of both sexes, beyond the establishment of sex differences.


Author(s):  
M Dlamini

Neuromonitoring is used during surgery to assess the functional integrity of the brain, brain stem, spinal cord, or peripheral nerves. The aim of monitoring is to prevent permanent damage by early intervention when changes are detected in the monitor. Neuromonitoring is also used to map areas of the nervous system in order to guide management in some cases. The best neuromonitor remains the awake patient. In the conscious state, the function of individual parts of the nervous system and the complex interactions of its different parts can be assessed more accurately. However, most surgical procedures involving the nervous system require general anaesthesia. Procedures that require neuromonitoring can have changes in their monitored parameters corrected by modifying the surgical approach or by having the anaesthesiologist manipulate the parameters under their control. An ideal neuromonitor would be one that is specific for the parameter of interest, and gives reliable, reproducible, or continuous results.


Author(s):  
Mark J. Edwards ◽  
Penelope Talelli

For video material relating to movement disorders, please go to Movement Disorders Videos. Less is known of the function of the cerebellum, thalamus and basal ganglia than of other structures in the brain, but there is an increasing appreciation of their complex role in motor and nonmotor functions of the entire nervous system. These structures exercise functions that far exceed their previously assumed supporting parts as simple ‘relay stations’ between cortex and spinal cord....


2020 ◽  
pp. 5937-5945
Author(s):  
Mark J. Edwards ◽  
Penelope Talelli

Less is known of the function of the cerebellum, thalamus, and basal ganglia than of other structures in the brain, but there is an increasing appreciation of their complex role in motor and non-motor functions of the entire nervous system. These structures exercise functions that far exceed their previously assumed supporting parts as simple ‘relay stations’ between cortex and spinal cord. The subcortical structures receive massive different inputs from the cerebral cortex and peripheral sense organs and stretch receptors. Through recurrent feedback loops this information is integrated and shaped to provide output which contributes to scaling, sequencing, and timing of movement, as well as learning and automatization of motor and non-motor behaviours.


1984 ◽  
Vol 4 (10) ◽  
pp. 2187-2197 ◽  
Author(s):  
M H Brilliant ◽  
N Sueoka ◽  
D M Chikaraishi

To examine the expression of genes encoding rare transcripts in the rat brain, we have characterized genomic DNA clones corresponding to this class. In brain cells, as in all cell types, rare transcripts constitute the majority of different sequences transcribed. Moreover, when compared with other tissues or cultured cells, brain tissue may be expected to have an even larger set of rare transcripts, some of which could be restricted to subpopulations of neural cells. We have identified seven clones whose transcripts are nonabundant, averaging less than three copies per cell. Clone rg13 (rat genomic 13) RNA was detected only in the brain, whereas RNA of a second clone, rg40, was also detected in the brain and in a melanoma. Transcripts of rg13 were found in cerebellum, cerebral cortex, and regions underlying the cortex, whereas rg40 transcripts were not detected in the cerebellum. Transcripts of both rg13 and rg40 were found in pelleted polysomal RNA. RNA of another clone, rg34, was found in the brain, liver, and kidney but was found in pelleted polysomal RNA only in the brain, suggesting that its expression may be post-transcriptionally controlled. The remaining four clones represent rare transcripts that are common to the brain, liver, and kidney; rg18 RNA is restricted to the nucleus, whereas rg3, rg26, and rg36 transcripts are found in the cytoplasm of all three tissues. Transcripts of the brain-specific clone, rg13, and the commonly expressed clone, rg3, are nonpolyadenylated, presumably belonging to the high-complexity, nonpolyadenylated class of transcripts in the mammalian brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salman Khaksarighiri ◽  
Jingnan Guo ◽  
Robert Wimmer-Schweingruber ◽  
Livio Narici

AbstractHealth risks from radiation exposure in space are an important factor for astronauts’ safety as they venture on long-duration missions to the Moon or Mars. It is important to assess the radiation level inside the human brain to evaluate the possible hazardous effects on the central nervous system especially during solar energetic particle (SEP) events. We use a realistic model of the head/brain structure and calculate the radiation deposit therein by realistic SEP events, also under various shielding scenarios. We then determine the relation between the radiation dose deposited in different parts of the brain and the properties of the SEP events and obtain some simple and ready-to-use functions which can be used to quickly and reliably forecast the event dose in the brain. Such a novel tool can be used from fast nowcasting of the consequences of SEP events to optimization of shielding systems and other mitigation strategies of astronauts in space.


Sign in / Sign up

Export Citation Format

Share Document