Evolution of Design Code Requirements for Exterior Elements and Connections

2005 ◽  
Vol 21 (1) ◽  
pp. 213-224 ◽  
Author(s):  
Brian J. Sielaff ◽  
Richard J. Nielsen ◽  
Edwin R. Schmeckpeper

Seismic design requirements for precast concrete cladding panel connections have evolved significantly over the past fifty years. This paper summarizes the pertinent requirements from the Uniform Building Code from 1967 to 1997, and the International Building Code 2000. A hypothetical design illustrates how emphasis in the code has evolved for both lateral force requirements and story drift displacement requirements arriving at a balance of moderate lateral force and displacement requirements. The numerical results are based on a hypothetical case of panel connections for a ten-story moment-resisting steel frame structure built in seismic Zone 4. This historical summary is of value to designers who deal with the seismic rehabilitation of precast panel connections.

1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


Author(s):  
Richard Fenwick ◽  
Gregory MacRae

Major changes have occurred over the last six decades in New Zealand design codes for seismic resistance of structures. This paper describes the changes in the required design strengths, stiffness levels and capacity design provisions with particular reference to buildings where the lateral force resistance is provided by reinforced concrete moment resisting frames. It is shown that simple comparisons of response spectra and limiting inter-storey drifts can give misleading conclusions regarding relative strength and stiffness requirements unless allowance is made for many other interacting factors. To illustrate this, minimum design requirements defined in codes (or standards) over the last six decades are compared with the corresponding 2009 design requirements for regular buildings in which the lateral force resistance is provided by moment resisting frames. The approach that is described can be applied to other forms of structure. The paper is intended to provide background information for engineers planning to assess the need for seismic retrofit of existing buildings and to show the different factors which should to be considered in assessing existing structures against current design criteria.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1245-1248
Author(s):  
Zhuo Jun Zeng ◽  
Jun Ping Wang ◽  
Yan Xiang Li

This article analysis stairs effect on steel frame structure under seismic loading by using the finite element software MIDAS Gen. Detailed analyzing impact of stairs on the self-vibration period, period ratio, the story drift and other design indexes in designing of the impact under seismic loading. Analysis shows that stairs have great effects on the design index of steel frame structure. Therefore the stair effect must be considered in analysis of structure design and modeling.


2012 ◽  
Vol 166-169 ◽  
pp. 1117-1120
Author(s):  
Ming Li ◽  
Yong Fang Liu ◽  
Lian Guang Jia ◽  
Yong Liu ◽  
Jingfeng Du

Structure may encounter higher seismic fortification intensity than adopted. So how the structure reacts in that case becomes a concerned problem for civil engineers. In order to solve the problem, the response of a steel braced frame structure is analyzed in this paper when facing higher seismic fortification intensity. The result shows that the lateral sway between layers, the vertex displacement, the bending and shear strength of the frame beams and the stability of the components are still meet the design requirements, and steel frame structure has good seismic performance.


2019 ◽  
Vol 10 (1) ◽  
pp. 110-122 ◽  
Author(s):  
Parthasarathi N. ◽  
Satyanarayanan K.S. ◽  
Thamilarau V. ◽  
Prakash M.

PurposeThe purpose of this study is progressive collapse behavior in buildings. It occurs due to removal/damage of a column by fire, blast or vehicle impact.Design/methodology/approachThe present study investigates the comparative behavior of 3D four-storey moment resisting steel frame using ABAQUS to predict the sensitivity of the structure in progressive collapse because of fire loads. Columns at different levels were given different temperature with reduced material properties and yield strength. Progressive collapse load combination was adopted as per General Service Administration guidelines. Corner, middle, intermediate, multiple corner and multiple intermediate columns were subjected to fire load separately.FindingsThe results for displacement, stress, shear force and axial force were captured and discussed.Originality/valueThe study covers linear analysis of steel frame because of different temperature. In linear analysis. columns were subjected to different temperature and their results were studied. Effect of temperature in the structure were captured because of different fire conditions.


Author(s):  
Richard Fenwick ◽  
David Lau ◽  
Barry Davidson

A series of ductile moment resisting reinforced concrete frames are sized to meet the minimum seismic provisions of the New Zealand Loadings Standard, NZS 4203-1992, the Draft NZ/Australian Loadings Standard, the Uniform Building Code, UBC-1997, the International Building code, IBC 2000 (1998 draft) and Eurocode 8 (1998 draft). The results of the analyses allow valid comparisons to be made between the different codes. It is shown that comparisons of individual clauses can be misleading due to the many interactions that occur between clauses. Comparative analyses were made for the buildings described above located in both high and low seismic regions. It is shown that the strength and stiffness requirements for both the New Zealand Loadings Standard and the Draft Standard are low compared with the other codes of practice in the high seismic zone. It is recommended that the required design strengths in the Draft NZ/Australian Standard be increased.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 349-384 ◽  
Author(s):  
S. K. Ghosh ◽  
Ned M. Cleland

The Precast/Prestressed Concrete Institute (PCI) sent an assessment team to Chile, which visited the areas affected by the 27 February 2010 earthquake between 26 and 30 April 2010. This paper reports on the team's observations on the performance of precast/prestressed concrete structures. The precast concrete building systems observed by the PCI team generally performed well. In some cases, the lateral force-resisting system performed satisfactorily, but the absence or weakness of diaphragm framing resulted in local failures. Overall, the PCI team found a mature and sophisticated precast concrete industry that has successfully considered and solved issues of earthquake resistance without some of the constraints imposed on U.S. practice by restrictive building code provisions.


2011 ◽  
Vol 94-96 ◽  
pp. 310-315 ◽  
Author(s):  
Sheng Gu ◽  
Bai Jian Tang ◽  
Jian Hua Shao

According to the superposition principle of building structure, the lateral deformation mode of pre-stressed mega bracing-steel frame structure was analyzed, then the relation between the structural maximum inter-story drift and cross section area of cable was further established. Based on the area of cable derived by the design target value of inter-story drift, the qualitative estimation theory on cross section area of the cable is finally determined.


2004 ◽  
Vol 20 (1) ◽  
pp. 67-89 ◽  
Author(s):  
Wei Liu ◽  
Mai Tong ◽  
Yihui Wu ◽  
George C. Lee

Energy dissipation devices (EDDs) have been accepted as one of the viable strategies for enhancing the seismic performance of building structures. However, the current design provisions do not provide guidelines for optimizing the EDD configurations on structures. For many building structures an efficient configuration of EDDs may provide considerable performance improvement. Similarly, an optimized configuration may reduce the number of EDDs required to achieve a target performance objective. In this paper an existing building with added linear viscous dampers is redesigned based on different performance index optimization. The results indicate that the optimal device configurations are highly related to the dynamic properties of the structure and its required performance index. In one instance, where the cost is the major concern and a performance requirement is placed on story drift limitation, the total device damping coefficient can be reduced by 26%.


Sign in / Sign up

Export Citation Format

Share Document