Extraction of Tsunami-Flooded Areas and Damaged Buildings in the 2011 Tohoku-Oki Earthquake from TerraSAR-X Intensity Images

2013 ◽  
Vol 29 (1_suppl) ◽  
pp. 183-200 ◽  
Author(s):  
Wen Liu ◽  
Fumio Yamazaki ◽  
Hideomi Gokon ◽  
Shun-ichi Koshimura

The Tohoku earthquake of 11 March 2011 caused very large tsunamis and widespread devastation. Various high-resolution satellites captured details of affected areas and were utilized in emergency response. In this study, high-resolution pre- and post-event TerraSAR-X intensity images were used to identify tsunami-flooded areas and damaged buildings. Since water surface generally shows very little backscatter, flooded areas could be extracted by the difference of backscattering coefficients between the pre- and post-event images. Impacted buildings were detected by calculating the difference and correlation coefficient within the outline of each building. The damage estimates were compared with visual interpretation results, which suggest that the overall accuracy of the proposed method for flooded areas was 80%, and for damaged buildings was 94%. Since the proposed half-automated method takes less processing time and is applicable to various cases, it is expected to provide quick and useful information in emergency management.

2016 ◽  
Vol 32 (1) ◽  
pp. 591-610 ◽  
Author(s):  
Hiroyuki Miura ◽  
Saburoh Midorikawa ◽  
Masashi Matsuoka

Damage to individual buildings in an urban area of Port-au-Prince, Haiti, from the 2010 Haiti earthquake was assessed by means of high-resolution synthetic aperture radar (SAR) intensity images and ancillary building footprints. A comparison of pre- and post-event images and a building damage inventory showed that backscattering intensity between images was more significantly changed in collapsed buildings than in less damaged buildings. The linear discriminant function, based on the difference and correlation coefficient of the images was developed to detect collapsed buildings. The result showed that almost 75% of the buildings were correctly detected by discriminant analysis. An accuracy assessment revealed the difficulty of detecting small and congested buildings because the number of image pixels was too small and the buildings were obscured by neighboring buildings and other features in the images.


Author(s):  
J.S. Bow ◽  
R.W. Carpenter ◽  
M.J. Kim

A prominent characteristic of high-resolution images of 6H-SiC viewed from [110] is a zigzag shape with a period of 6 layers as shown in Fig.1. Sometimes the contrast is same through the 6 layers of (0006) planes (Fig.1a), but in most cases it appears as in Fig.1b -- alternate bright/dark contrast among every three (0006) planes. Alternate bright/dark contrast is most common for the thicker specimens. The SAD patterns of these two types of image are almost same, and there is no indication that the difference results from compositional ordering. O’Keefe et al. concluded this type of alternate contrast was due to crystal tilt in thick parts of the specimen. However, no detailed explanation was given. Images of similar character from Ti3Al, which is also a hexagonal crystal, were reported by Howe et al. Howe attributed the bright/dark contrast among alternate (0002) Ti3Al planes to phase shifts produced by incident beam tilt.


Author(s):  
Chung-Ching Lin ◽  
Franco Stellari ◽  
Lynne Gignac ◽  
Peilin Song ◽  
John Bruley

Abstract Transmission Electron Microscopy (TEM) and scanning TEM (STEM) is widely used to acquire ultra high resolution images in different research areas. For some applications, a single TEM/STEM image does not provide enough information for analysis. One example in VLSI circuit failure analysis is the tracking of long interconnection. The capability of creating a large map of high resolution images may enable significant progress in some tasks. However, stitching TEM/STEM images in semiconductor applications is difficult and existing tools are unable to provide usable stitching results for analysis. In this paper, a novel fully automated method for stitching TEM/STEM image mosaics is proposed. The proposed method allows one to reach a global optimal configuration of each image tile so that both missing and false-positive correspondences can be tolerated. The experiment results presented in this paper show that the proposed method is robust and performs well in very challenging situations.


2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


1968 ◽  
Vol 58 (3) ◽  
pp. 977-991
Author(s):  
Richard A. Haubrich

abstract Arrays of detectors placed at discrete points are often used in problems requiring high resolution in wave number for a limited number of detectors. The resolution performance of an array depends on the positions of detectors as well as the data processing of the array output. The performance can be expressed in terms of the “spectrum window”. Spectrum windows may be designed by a general least-square fit procedure. An alternate approach is to design the array to obtain the largest uniformly spaced coarray, the set of points which includes all the difference spacings of the array. Some designs obtained from the two methods are given and compared.


Author(s):  
Daniele Giordan ◽  
Davide Notti ◽  
Alfredo Villa ◽  
Francesco Zucca ◽  
Fabiana Calò ◽  
...  

Abstract. Flood mapping and estimation of maximum water depth are essential elements for a first damages evaluation, civil protection interventions planning and detection of areas where remedial are more needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over plain areas. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data/sensors. We applied this method to November 2016 Piemonte (NW Italy) flood. We first mapped flooded areas at basin scale using free satellite data from low to medium-high resolution using both SAR (Sentinel-1, Cosmo-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra- high-resolution images from the low-cost aerial platform and Remotely Piloted Aerial System, we refined the flooded zone, and we detected the most damaged sector. The presented method considers both urbanized and not urbanized areas. Nadiral images have several limitations in particular in urbanized areas, where the use of terrestrial images solved this limitation. Very- and ultra-high resolution images have been processed with Structure from Motion (SfM) for the realization of 3-D models. These data, combined with available digital elevation model, allowed us to obtain maps of flooded area, maximum water high and damaged infrastructures.


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 118 ◽  
Author(s):  
Myroslava Lesiv ◽  
Linda See ◽  
Juan Laso Bayas ◽  
Tobias Sturn ◽  
Dmitry Schepaschenko ◽  
...  

Very high resolution (VHR) satellite imagery from Google Earth and Microsoft Bing Maps is increasingly being used in a variety of applications from computer sciences to arts and humanities. In the field of remote sensing, one use of this imagery is to create reference data sets through visual interpretation, e.g., to complement existing training data or to aid in the validation of land-cover products. Through new applications such as Collect Earth, this imagery is also being used for monitoring purposes in the form of statistical surveys obtained through visual interpretation. However, little is known about where VHR satellite imagery exists globally or the dates of the imagery. Here we present a global overview of the spatial and temporal distribution of VHR satellite imagery in Google Earth and Microsoft Bing Maps. The results show an uneven availability globally, with biases in certain areas such as the USA, Europe and India, and with clear discontinuities at political borders. We also show that the availability of VHR imagery is currently not adequate for monitoring protected areas and deforestation, but is better suited for monitoring changes in cropland or urban areas using visual interpretation.


2018 ◽  
Vol 10 (8) ◽  
pp. 1288 ◽  
Author(s):  
Filomena Romano ◽  
Domenico Cimini ◽  
Angela Cersosimo ◽  
Francesco Di Paola ◽  
Donatello Gallucci ◽  
...  

The Advanced Model for the Estimation of Surface Solar Irradiance (AMESIS) was developed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy (IMAA-CNR) to derive surface solar irradiance from SEVIRI radiometer on board the MSG geostationary satellite. The operational version of AMESIS has been running continuously at IMAA-CNR over all of Italy since 2017 in support to the monitoring of photovoltaic plants. The AMESIS operative model provides two different estimations of the surface solar irradiance: one is obtained considering only the low-resolution channels (SSI_VIS), while the other also takes into account the high-resolution HRV channel (SSI_HRV). This paper shows the difference between these two products against simultaneous ground-based observations from a network of 63 pyranometers for different sky conditions (clear, overcast and partially cloudy). Comparable statistical scores have been obtained for both AMESIS products in clear and cloud situation. In terms of bias and correlation coefficient over partially cloudy sky, better performances are found for SSI_HRV (0.34 W/m2 and 0.995, respectively) than SSI_VIS (−33.69 W/m2 and 0.862) at the expense of the greater run-time necessary to process HRV data channel.


2010 ◽  
Vol 14 (2) ◽  
pp. 393-405 ◽  
Author(s):  
S. Trevisani ◽  
M. Cavalli ◽  
L. Marchi

Abstract. High-resolution topographic data expand the potential of quantitative analysis of the earth surface, improving the interpretation of geomorphic processes. In particular, the morphologies of the channel beds of mountain streams, which are characterised by strong spatial variability, can be analysed much more effectively with this type of data. In this study, we analysed the aerial LiDAR topographic data of a headwater stream, the Rio Cordon (watershed area: 5 km2), located in the Dolomites (north-eastern Italy). The morphology of the channel bed of Rio Cordon is characterised by alternating step pools, cascades, and rapids with steps. We analysed the streambed morphology by means of ad hoc developed morphometric indices, capable of highlighting morphological features at a high level of spatial resolution. To perform the analysis and the data interpolation, we carried out a channel-oriented coordinate transformation. In the new coordinate system, the calculation of morphometric indices in directions along and transverse to the flow direction is straightforward. Three geomorphometric indices were developed and applied as follows: a slope index computed on the whole width of the channel bed, directional variograms computed along the flow direction and perpendicular to it, and local anomalies, calculated as the difference between directional variograms at different spatial scales. Directional variograms in the flow direction and local anomalies have proven to be effective at recognising morphologic units, such as steps, pools and clusters of large boulders. At the spatial scale of channel reaches, these indices have demonstrated a satisfactory capability to outline patterns associated with boulder cascades and rapids with steps, whereas they did not clearly differentiate between morphologies with less marked morphological differences, such as step pools and cascades.


Sign in / Sign up

Export Citation Format

Share Document