Site Effects and Building Damage Characterization in Concepción after the Mw 8.8 Maule Earthquake

2016 ◽  
Vol 32 (3) ◽  
pp. 1469-1488 ◽  
Author(s):  
Gonzalo A. Montalva ◽  
Francisco J. Chávez-Garcia ◽  
Andrés Tassara ◽  
Darío M. Jara Weisser

The influence of site effects on seismic demand was studied in Concepción to explain the observed damages suffered by engineered structures during the 2010 Mw 8.8 Maule, Chile, earthquake. Shallow shear-wave velocity ( V S), site period, and gravity measurements were used to assess site effects. The three-dimensional (3-D) basin shape was inverted from gravity values. Predominant period shows a good correlation with bedrock depth, suggesting that V S of soil is relatively uniform throughout the city. This was confirmed by direct V S measurements at 17 sites throughout the city. The irregular distribution of damage suggests that V S30 is not a good proxy for damage distribution in Concepción. In contrast, we observe dependence with basin thickness, site period, and estimated PGV for buildings with high vulnerability. Most low-vulnerability structures showed no damage regardless of site conditions and intensity measures. Our results indicate that site effects contributed to structural damage in vulnerable structures and these effects were primarily controlled by basin depth.

2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 55-74 ◽  
Author(s):  
Dominic Assimaki ◽  
Christian Ledezma ◽  
Gonzalo A. Montalva ◽  
Andres Tassara ◽  
George Mylonakis ◽  
...  

A set of observations on site effects and damage patterns from the Mw 8.8 Maule, Chile, earthquake is presented, focusing on identification of structural damage variability associated with nonuniform soil conditions and subsurface geology. Observations are reported from: (1) the City of Santiago de Chile (Américo Vespucio Norte Ring Highway, Ciudad Empresarial business park), (2) the Municipality of Viña del Mar, and (3) the City of Concepción, extending over 600 km along the Chilean coast. Reconnaissance information and ground motion recordings from the megathrust event are combined with site investigation data in the regions of interest. Comparisons against macroseismic observations related to uneven damage distribution from the Mw 8.0 1985 Valparaíso earthquake are discussed. Complexities associated with identifying the mechanics and underlying physical processes responsible for the manifestation of these effects are elucidated.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 407-424 ◽  
Author(s):  
Maria Ofelia Moroni ◽  
Mauricio Sarrazin ◽  
Pedro Soto

Several buildings and bridges with base isolation were in the area struck by the 27 February 2010, Mw 8.8 Maule earthquake. A building and two bridges that were instrumented with networks of accelerometers registered the quake; these records are analyzed here. Results of this kind are very valuable because a strong motion earthquake of large magnitude occurs only from time to time, and these rather new types of structures had not been exposed to such severe action. The isolated building is a four-story reinforced concrete and confined masonry structure located in the city of Santiago. The bridges are: (a) a 368m long continuous bridge located in Viña del Mar and (b) one section of a Santiago metropolitan train viaduct. Results show important reductions in horizontal accelerations, especially at the roof level of the building (to nearly 20% of the twin fixed-base case), and in the longitudinal direction of the bridges.


2021 ◽  
Vol 10 (7) ◽  
pp. 460
Author(s):  
Mario Matthys ◽  
Laure De Cock ◽  
John Vermaut ◽  
Nico Van de Weghe ◽  
Philippe De Maeyer

More and more digital 3D city models might evolve into spatiotemporal instruments with time as the 4th dimension. For digitizing the current situation, 3D scanning and photography are suitable tools. The spatial future could be integrated using 3D drawings by public space designers and architects. The digital spatial reconstruction of lost historical environments is more complex, expensive and rarely done. Three-dimensional co-creative digital drawing with citizens’ collaboration could be a solution. In 2016, the City of Ghent (Belgium) launched the “3D city game Ghent” project with time as one of the topics, focusing on the reconstruction of disappeared environments. Ghent inhabitants modelled in open-source 3D software and added animated 3D gamification and Transmedia Storytelling, resulting in a 4D web environment and VR/AR/XR applications. This study analyses this low-cost interdisciplinary 3D co-creative process and offers a framework to enable other cities and municipalities to realise a parallel virtual universe (an animated digital twin bringing the past to life). The result of this co-creation is the start of an “Animated Spatial Time Machine” (AniSTMa), a term that was, to the best of our knowledge, never used before. This research ultimately introduces a conceptual 4D space–time diagram with a relation between the current physical situation and a growing number of 3D animated models over time.


2021 ◽  
pp. 1-14
Author(s):  
Mohammad Reza Amiri Shahmirani ◽  
Abbas Akbarpour Nikghalb Rashti ◽  
Mohammad Reza Adib Ramezani ◽  
Emadaldin Mohammadi Golafshani

Prediction of structural damage prior to earthquake occurrence provides an early warning for stakeholders of building such as owners and urban managers and can lead to necessary decisions for retrofitting of structures before a disaster occurs, legislating urban provisions of execution of building particularly in earthquake prone areas and also management of critical situations and managing of relief and rescue. For proper prediction, an effective model should be produced according to field data that can predict damage degree of local buildings. In this paper in accordance with field data and Fuzzy logic, damage degree of building is evaluated. Effective parameters of this model as an input data of model consist of height and age of the building, shear wave velocity of soil, plan equivalent moment of inertia, fault distance, earthquake acceleration, the number of residents, the width of the street for 527 buildings in the city. The output parameter of the model, which was the damage degree of the buildings, was also classified as five groups of no damage, slight damage, moderate damage, extensive damage, and complete damage. The ranges of input and output classification were obtained based on the supervised center classification (SCC-FCM) method in accordance with field data.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Isaiah Ramos ◽  
Young Ho Park ◽  
Jordan Ulibarri-Sanchez

In this paper, we developed an exact analytical 3D elasticity solution to investigate mechanical behavior of a thick multilayered anisotropic fiber-reinforced pressure vessel subjected to multiple mechanical loadings. This closed-form solution was implemented in a computer program, and analytical results were compared to finite element analysis (FEA) calculations. In order to predict through-thickness stresses accurately, three-dimensional finite element meshes were used in the FEA since shell meshes can only be used to predict in-plane strength. Three-dimensional FEA results are in excellent agreement with the analytical results. Finally, using the proposed analytical approach, we evaluated structural damage and failure conditions of the composite pressure vessel using the Tsai–Wu failure criteria and predicted a maximum burst pressure.


Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 45
Author(s):  
Heba Kamal

New Damietta City is situated in a locale of moderate notable seismicity about M6.25 have happened. These dangerous tremors started from the Mediterranean subduction zone among African and Eurasian plates and is underlain by soaked late Holocene stores. In this examination, the city of New Damietta was assessed regarding site intensification and site period. Geographical and geotechnical examination including information base of 543 boreholes were gathered from past geotechnical reports and corroborative exhausting logs were executed by the Lodging and Building national Exploration focus. These information were incorporated to decide the variety of the dirt profile and in addition the qualities of the dirt layers inside the investigation site. One dimensional ground response close examination using corresponding straight system and nonlinear procedure have been done. Nonlinear examinations' results were differentiated and those of the indistinguishable direct method, and both of the similarities and differences are discussed. It is assumed that because of nonlinearity of soil under strong ground developments, 1-D parallel direct showing overestimates the strengthening structures the extent that add up to upgrade level, and can't viably speak to full frequencies and hysteric soil lead. Along these lines, more reasonable and suitable numerical strategies for ground reaction examination ought to be reviewed  


Sign in / Sign up

Export Citation Format

Share Document