Randomized, multicenter, two-dose level, open-label, phase IIa study with the intraperitoneally infused trifunctional bispecific antibody catumaxomab (anti-EpCAM × anti-CD3) to select the better dose level in platinum refractory epithelial ovarian cancer patients

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 5556-5556 ◽  
Author(s):  
A. Belau ◽  
J. Pfisterer ◽  
P. Wimberger ◽  
C. Kurzeder ◽  
A. Du Bois ◽  
...  

5556 Background: The trifunctional antibody catumaxomab specifically binds EpCAM+ tumor cells, CD3+ T lymphocytes and accessory cells via the Fcγ RI/III thereby inducing a tumor specific cell mediated cytotoxicity in vitro and in vivo. This study was conducted to evaluate efficacy and safety of two different regimens of catumaxomab. Methods: Women with platinum-refractory (progressing during or ≤ 6 mos. after the last platinum containing regimen) epithelial ovarian cancer and measurable recurrent disease were randomized to receive either 10 -10 -10 - 10 μg or 10–20–50–100 μg of catumaxomab over 6h i.p on days 0, 3, 7 and 10. Results: 45 pts. were entered (22 high dose (HD)-arm, 23 low dose (LD)-arm). Both groups were well balanced concerning ECOG-perfomance score, with a median age of 65.6y in the HD- and 57.6y in the LD-arm and with a median diameter of measurable lesions of 90mm in the HD- and 104mm in the LD-arm. Based on the AEs, changes in laboratory parameters and other safety variables observed in the safety population in the course of this study, the accumulated safety experience is consistent with the key features of the mode of action of catumaxomab. Their intensity on median level was mostly mild to moderate. A clinical benefit was detectable in 27.3% of pts. for the HD- (1PR/5SD) and 8.7% of pts. for the LD-arm (2SD). After a median follow-up of 4.96 months, the median overall survival time was 182 d for the HD- and 114 d for the LD-arm. Conclusion: The results demonstrate that catumaxomab is safe with acceptable toxicity when administered as a sequence of 4 IP infusions at 10, 20, 50 and 100 μg. A modest dose effect is observed for the higher doses of catumaxomab. No significant financial relationships to disclose.

2017 ◽  
Vol 43 (6) ◽  
pp. 2489-2504 ◽  
Author(s):  
Le Chen ◽  
Ying Yao ◽  
Lijuan Sun ◽  
Jiajia Zhou ◽  
Minmin Miao ◽  
...  

Background/Aims: Our study aims to investigate the role, effect and mechanisms of ESRP1 (epithelial splicing regulatory protein 1) in epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). Methods: Microarray and immunohistochemical analysis of ESRP1 expression were performed in EOC cases. The correlations between ESRP1 expression and clinical factors on EOC were assessed. Lentivirus-mediated RNA interference and EGFP vector which contains ESRP1 gene were used to down-regulate and up-regulate ESRP1 expression in human EOC cell lines. Roles of ESRP1 in cell growth, migration and invasion of EOC cells were also measured by Cell Counting Kit-8 and Transwell systems in vitro and by a nude mice intraperitoneal transplantation model in vivo. Results: By the analysis of Gene Expression Omnibus (GEO) (p<0.05) and our own microarray data (p<0.001), ESRP1 expression in EOC was significantly different from normal ovarian tissue. It was abundant in the nuclei of cancer cells and in malignant lesions. However, it was weakly expressed or negative in both normal and benign lesions. High ESRP1 expression in EOC was associated with poor clinical outcomes. Decreased ESRP1 expression significantly increased cell migration and invasion both in vivo and in vitro. Snail strongly repressed ESRP1 transcription through binding to the ESRP1 promoter in EOC cells. Furthermore, ESRP1 regulated the expression of CD44s. Down-regulated ESRP1 resulted in an isoform switching from CD44v to CD44s, which modulated epithelial-mesenchymal transition (EMT) program in EOC. Up-regulatin of ESRP1 was detected in mesenchymal to epithelial transition (MET) in vivo. Conclusions: ESRP1 regulates CD44 alternative splicing during the EMT process which plays an important role in EOC carcinogenesis. In addition, ESRP1 is associated with disease prognosis in EOC.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 463 ◽  
Author(s):  
Wei-Min Chung ◽  
Yen-Ping Ho ◽  
Wei-Chun Chang ◽  
Yuan-Chang Dai ◽  
Lumin Chen ◽  
...  

Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies and presents chemoresistance after chemotherapy treatment. Androgen receptor (AR) has been known to participate in proliferation. Yet the mechanisms of the resistance of this drug and its linkage to the AR remains unclear. Methods: To elucidate AR-related paclitaxel sensitivity, co-IP, luciferase reporter assay and ChIP assay were performed to identify that AR direct-regulated ABCG2 expression under paclitaxel treatment. IHC staining by AR antibody presented higher AR expression in serous-type patients than other types. AR degradation enhancer (ASC-J9) was used to examine paclitaxel-associated and paclitaxel-resistant cytotoxicity in vitro and in vivo. Results: We found AR/aryl hydrocarbon receptor (AhR)-mediates ABCG2 expression and leads to a change in paclitaxel cytotoxicity/sensitivity in EOC serous subtype cell lines. Molecular mechanism study showed that paclitaxel activated AR transactivity and bound to alternative ARE in the ABCG2 proximal promoter region. To identify AR as a potential therapeutic target, the ASC-J9 was used to re-sensitize paclitaxel-resistant EOC tumors upon paclitaxel treatment in vitro and in vivo. Conclusion: The results demonstrated that activation of AR transactivity beyond the androgen-associated biological effect. This novel AR mechanism explains that degradation of AR is the most effective therapeutic strategy for treating AR-positive EOC serous subtype.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 672 ◽  
Author(s):  
Roberta Affatato ◽  
Laura Carrassa ◽  
Rosaria Chilà ◽  
Monica Lupi ◽  
Valentina Restelli ◽  
...  

Mucinous epithelial ovarian cancer (mEOC) is a rare subset of epithelial ovarian cancer. When diagnosed at a late stage, its prognosis is very poor, as it is quite chemo-resistant. To find new therapeutic options for mEOC, we performed high-throughput screening using a siRNA library directed against human protein kinases in a mEOC cell line, and polo-like kinase1 (PLK1) was identified as the kinase whose downregulation interfered with cell proliferation. Both PLK1 siRNA and two specific PLK1 inhibitors (onvansertib and volasertib) were able to inhibit cell growth, induce apoptosis and block cells in the G2/M phase of the cell cycle. We evaluated, in vitro, the combinations of PLK1 inhibitors and different chemotherapeutic drugs currently used in the treatment of mEOC, and we observed a synergistic effect of PLK1 inhibitors and antimitotic drugs. When translated into an in vivo xenograft model, the combination of onvansertib and paclitaxel resulted in stronger tumor regressions and in a longer mice survival than the single treatments. These effects were associated with a higher induction of mitotic block and induction of apoptosis, similarly to what was observed in vitro. These data suggest that the combination onvansertib/paclitaxel could represent a new active therapeutic option in mEOC.


2015 ◽  
Vol 12 (2) ◽  
pp. 3107-3114 ◽  
Author(s):  
LIYU ZHANG ◽  
ZHIHONG LI ◽  
FENGCHUN GAI ◽  
YANPING WANG

1994 ◽  
Vol 12 (12) ◽  
pp. 2654-2666 ◽  
Author(s):  
E A Eisenhauer ◽  
W W ten Bokkel Huinink ◽  
K D Swenerton ◽  
L Gianni ◽  
J Myles ◽  
...  

PURPOSE Taxol (paclitaxel; Bristol-Myers Squibb, Wallingford, CT) is a new anticancer agent with activity in a number of human tumors, including epithelial ovarian cancer. In nonrandomized trials, doses studied have ranged from 135 mg/m2 to 250 mg/m2 administered over 24 hours with premedication to avoid hypersensitivity reactions (HSRs). This study addressed two questions: the dose-response relationship of Taxol in relapsed ovarian cancer and the safety of a short infusion given with premedication. METHODS Women with platinum-pretreated epithelial ovarian cancer and measurable recurrent disease were randomized in a bifactorial design to receive either 175 or 135 mg/m2 of Taxol over either 24 or 3 hours. Major end points were the frequency of significant HSRs and objective response rate. Secondary end points were progression-free and overall survival. RESULTS Of 407 patients randomized, 391 were eligible and 382 assessable for response. Analysis was performed according to the bifactorial design. Severe HSRs were rare (1.5% patients) and were not affected by either dose or schedule. Response was slightly higher at the 175-mg/m2 dose (20%) than at 135 mg/m2 (15%), but this was not statistically significant (P = .2). However, progression-free survival was significantly longer in the high-dose group (19 v 14 weeks; P = .02). Significantly more neutropenia was seen when Taxol was administered as a 24-hour infusion. Response rates were similar in the 24- and 3-hour groups (19% and 16%, respectively; P = .6). No survival differences were noted. CONCLUSION The 3-hour infusion of Taxol is safe when given with premedication and is associated with less neutropenia. There is a modest dose effect with longer time to progression at 175 mg/m2. The observation that longer infusion produces more myelosuppression but does not yield higher response rates should lead to further studies to determine the optimal dose and schedule of this interesting new agent.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhendan Zhao ◽  
Zhiling Wang ◽  
Pengling Wang ◽  
Shujie Liu ◽  
Yingwei Li ◽  
...  

Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document