DNA mismatch repair deficiency and benefit from adjuvant bevacizumab in NSABP C-08: Molecular profiling results.

2012 ◽  
Vol 30 (30_suppl) ◽  
pp. 55-55
Author(s):  
Katherine L. Pogue-Geile ◽  
Noriko Tanaka ◽  
Patrick Gavin ◽  
Greg Yothers ◽  
Linda H. Colangelo ◽  
...  

55 Background: The purpose of this study was to identify biomarkers that define a subset of patients who received benefit from bevacizumab (bev) in NSABP trial C-08, even though bev did not improve outcomes over standard adjuvant chemotherapy (CT) in the treatment of stage II and III colon cancer. Methods: A randomly selected cohort of C-08 cases (N=500) were profiled for whole genome expression (N=445) and for mutations (N=463) in KRAS, NRAS, PIK3CA, and MET. BRAF mutations and mismatch repair (MMR) status were profiled on the available cases (N=1,764 and 1,993, respectively). Cox proportional hazard models were used to assess prognosis and prediction for the value of bev using overall survival (0S) and time to recurrence (TTR) as end points. Results: The effect of bev was different for MMR deficient (MMR-d) and proficient tumors for OS (interaction p=.035) but not TTR (interaction p=.08). Patients with MMR-d (N=252) tumors showed a significant benefit from the addition of bev to CT for OS (hazard ratio =0.52 (95% CI: 0.29-0.94, p=0.028). KRAS, NRAS, PIK3CA, and MET were not significant for interaction with bev in the discovery cohort. BRAF mutations were associated with MMR status (p<.0001) and the prognostic value of MMR depended on BRAF for TTR (interaction p=.027) but not OS (interaction p=.31). The effect of bev was independent of BRAF (interaction p=.28 TTR and .37 OS). Three-factor interaction tests for bev, MMR, and BRAF were not significant for either endpoint. Gene expression analysis with BRB array tools identified 5 BioCarta pathways (p<0.05) which differentially expressed in 4 statistical tests; 4 of these pathways were directly or indirectly involved in T cell activation and one was involved in the activation of VEGF. Conclusions: Patients in C-08 with MMR-d tumors received benefit from bev treatment but these results need to be validated in a separate study. Gene expression data suggest that T-cells may be differentially expressed based on MMR status. Activation of VEGF has been shown to suppress T-cell development (Ohm et al. Blood. 2003:10;4878). A speculative possibility for the benefit of bev in MMR-d tumors may be due to blocking of VEGF, releasing T cells from VEGF suppression.

2021 ◽  
Author(s):  
Morteza Aramesh ◽  
Diana Stoycheva ◽  
Ioana Sandu ◽  
Stephan J. Ihle ◽  
Tamara Zund ◽  
...  

T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanisms by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation, and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200 nm pores, but not in 400 nm pores. Consequently, formation of TCR nanoclustered hotspots within 200 nm pores, allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.


2019 ◽  
Vol 49 (6) ◽  
pp. 653-662
Author(s):  
Ryo Nakagawa ◽  
Ryosuke Muroyama ◽  
Chisato Saeki ◽  
Tsunekazu Oikawa ◽  
Yoshimi Kaise ◽  
...  

2006 ◽  
Vol 290 (1) ◽  
pp. L66-L74 ◽  
Author(s):  
Joshua Rubenfeld ◽  
Jia Guo ◽  
Nitat Sookrung ◽  
Rongbing Chen ◽  
Wanpen Chaicumpa ◽  
...  

Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid with wide-ranging effects on multiple lung cells including airway epithelial and smooth muscle cells. LPA can augment migration and cytokine synthesis in lymphocytes, but its potential effects on Th2 cytokines have not been well studied. We examined the effects of physiological concentrations of LPA on IL-13 gene expression in human T cells. The Jurkat T cell line and human peripheral blood CD4+ T cells were incubated with LPA alone or with 1) pharmacological agonists of different signaling pathways, or 2) antibodies directed against the T cell receptor complex and costimulatory molecules. Luciferase-based reporter constructs driven by different lengths of the human IL-13 promoter were transfected by electroporation in Jurkat cells treated with and without LPA. The effects of LPA on IL-13 mRNA stability were examined using actinomycin D to halt ongoing transcription. Expression of mRNA encoding LPA2and LPP-1 increased with T cell activation. LPA augmented IL-13 secretion under conditions of submaximal T cell activation. This was observed using pharmacological agonists activating intracellular calcium-, PKC-, and cAMP-dependent signaling pathways, as well as antibodies directed against CD3 and CD28. LPA only slightly prolonged IL-13 mRNA half-life in submaximally stimulated Jurkat cells. In contrast, LPA significantly enhanced transcriptional activation of the IL-13 promoter via regulatory elements contained within proximal 312 bp. The effects of LPA on IL-13 promoter activation appeared to be distinct from those mediated by GATA-3. LPA can augment IL-13 gene expression in T cells, especially under conditions of submaximal activation.


2016 ◽  
Author(s):  
Rachel E. Gate ◽  
Christine S. Cheng ◽  
Aviva P. Aiden ◽  
Atsede Siba ◽  
Marcin Tabaka ◽  
...  

AbstractOver 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) and RNA-seq profiles from activated CD4+ T cells of up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, in patterns consistent with the 3D organization of chromosomes measured by in situ Hi-C in T cells. 15% of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak through disrupting binding sites for transcription factors important for T cell differentiation and activation. These ATAC quantitative trait nucleotides (ATAC-QTNs) have the largest effects on co-accessible peaks, are associated with gene expression from the same aliquot of cells, are rarely affecting core binding motifs, and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis- regulatory elements, in isolation or in concert, to influence gene expression in primary immune cells that play a key role in many human diseases.


2020 ◽  
Author(s):  
Cheleka A.M. Mpande ◽  
Virginie Rozot ◽  
Boitumelo Mosito ◽  
Munyaradzi Musvosvi ◽  
One B Dintwe ◽  
...  

AbstractBackgroundRecent Mycobacterium tuberculosis (M.tb) infection is associated with a higher risk of progression to tuberculosis disease, compared to persistent infection after remote exposure. However, current immunodiagnostic tools fail to distinguish between recent and remote infection. We aimed to characterise the immunobiology associated with acquisition of M.tb infection and identify a biomarker that can distinguish recent from remote infection.MethodsHealthy South African adolescents were serially tested with QuantiFERON-TB Gold to define recent (QuantiFERON-TB conversion <6 months) and persistent (QuantiFERON-TB+ for >1.5 year) infection. We characterized M.tb-specific CD4 T cell functional (IFN-γ, TNF, IL-2, CD107, CD154), memory (CD45RA, CCR7, CD27, KLRG-1) and activation (HLA-DR) profiles by flow cytometry after CFP-10/ESAT-6 peptide pool or M.tb lysate stimulation. We then assessed the diagnostic performance of immune profiles that were differentially expressed between individuals with recent or persistent QuantiFERON-TB+.FindingsCFP-10/ESAT-6-specific CD4 T cell activation but not functional or memory phenotypes distinguished between individuals with recent and persistent QuantiFERON-TB+. In response to M.tb lysate, recent QuantiFERON-TB+ individuals had lower proportions of highly differentiated IFN-γ+TNF+ CD4 T cells expressing a KLRG-1+ effector phenotype and higher proportions of early differentiated IFN-γ-TNF+IL-2+ and activated CD4 T cells compared to persistent QuantiFERON-TB+ individuals. Among all differentially expressed T cell features CFP-10/ESAT-6-specific CD4 T cell activation was the best performing diagnostic biomarker of recent infection.InterpretationRecent M.tb infection is associated with highly activated and moderately differentiated functional M.tb-specific T cell subsets, that can be used as biomarkers to distinguish between recent and remote infection.


2020 ◽  
Author(s):  
Michael P. Gallagher ◽  
James M. Conley ◽  
Pranitha Vangala ◽  
Andrea Reboldi ◽  
Manuel Garber ◽  
...  

ABSTRACTThe strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal kinase ITK simultaneously trigger many biochemically separate TCR signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through unequal activation of disparate signaling pathways, we examined Erk1/2 activation and NFAT, NF-κB translocation in naive OT-I CD8+ cell nuclei. We observed consistent digital activation of NFAT1 and Erk-MAPK, but NF-κB displayed dynamic, graded activation in response to variation in TCR signal strength and was tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed dampened induction of AP-1 factors Fos and Fosb, NF-κB response gene transcripts, and survival factor Il2 transcripts. ATAC-seq analysis also revealed genomic regions most sensitive to ITK inhibition were enriched for NF-κB and AP-1 motifs. Specific inhibition of NF-κB during peptide stimulation tuned expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating optimal activation of separate TCR downstream pathways, specifically aiding NF-κB activation. More broadly, we revealed a mechanism by which variation in TCR signal strength can produce patterns of graded gene expression in activated T cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naiara G. Bediaga ◽  
Hannah D. Coughlan ◽  
Timothy M. Johanson ◽  
Alexandra L. Garnham ◽  
Gaetano Naselli ◽  
...  

AbstractRemodelling of chromatin architecture is known to regulate gene expression and has been well characterized in cell lineage development but less so in response to cell perturbation. Activation of T cells, which triggers extensive changes in transcriptional programs, serves as an instructive model to elucidate how changes in chromatin architecture orchestrate gene expression in response to cell perturbation. To characterize coordinate changes at different levels of chromatin architecture, we analyzed chromatin accessibility, chromosome conformation and gene expression in activated human T cells. T cell activation was characterized by widespread changes in chromatin accessibility and interactions that were shared between activated CD4+ and CD8+ T cells, and with the formation of active regulatory regions associated with transcription factors relevant to T cell biology. Chromatin interactions that increased and decreased were coupled, respectively, with up- and down-regulation of corresponding target genes. Furthermore, activation was associated with disruption of long-range chromatin interactions and with partitioning of topologically associating domains (TADs) and remodelling of their TAD boundaries. Newly formed/strengthened TAD boundaries were associated with higher nucleosome occupancy and lower accessibility, linking changes in lower and higher order chromatin architecture. T cell activation exemplifies coordinate multi-level remodelling of chromatin underlying gene transcription.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2695-2702 ◽  
Author(s):  
Valeriu B. Cismasiu ◽  
Sailaja Ghanta ◽  
Javier Duque ◽  
Diana I. Albu ◽  
Hong-Mei Chen ◽  
...  

AbstractBCL11A and BCL11B are transcriptional regulators important for lymphopoiesis and previously associated with hematopoietic malignancies. Ablation of the mouse Bcl11b locus results in failure to generate double-positive thymocytes, implicating a critical role of Bcl11b in T-cell development. However, BCL11B is also expressed in CD4+ T lymphocytes, both in resting and activated states. Here we show both in transformed and primary CD4+ T cells that BCL11B participates in the control of the interleukin-2 (IL2) gene expression following activation through T-cell receptor (TCR). BCL11B augments expression from the IL2 promoter through direct binding to the US1 site. In addition, BCL11B associates with the p300 coactivator in CD4+ T cells activated through TCR, which may account for its transcriptional activation function. These results provide the first evidence that BCL11B, originally described as a transcriptional repressor, activates transcription of a target gene in the context of T-cell activation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4211-4211
Author(s):  
Patrick R. Hagner ◽  
Fadi Towfic ◽  
Frank Schmitz ◽  
Xuehai Wang ◽  
Andrew P. Weng ◽  
...  

Abstract Background : Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, constituting 30-40% of all new cases. Avadomide, a small molecule cereblon modulator currently being developed in DLBCL, binds to cereblon in the CRL4CRBN E3 ligase, leading to ubiquitination and subsequent proteasomal degradation of transcription factors Aiolos and Ikaros. This results in decreased proliferation and increased apoptosis of DLBCL cells, independent of cell-of-origin, and immunostimulatory effects in T and NK cells, as measured by increased cytokine production, cell surface activation markers, and enhanced antibody-dependent cellular cytotoxicity. A novel gene expression-based classifier, which detects DLBCL patients with T cell and macrophage infiltration within the tumor microenvironment, has been shown to enrich for responders to avadomide. Avadomide, as a single agent and in combination with rituximab, is currently being investigated in relapsed/refractory DLBCL (NCT01421524 and NCT02031419). Methods : Eighty-one DLBCL patients were enrolled in the expansion phase of the CC-122-ST-001 study (NCT01421524). Peripheral blood T cell subsets were enumerated at screening (baseline), cycle 1 day 15 (C1D15) and cycle 2 day 15 (C2D15) by flow cytometric immunophenotyping. Ex vivo production of IL-2 and IFNγ, as a measure of T cell activation, was determined using the α-CD3 TruCulture Assay. Changes from baseline were evaluated using the t-test with P<0.05 considered significant. T cell receptor (TCR) repertoire analysis through TCRB CDR3 region sequencing was done to derive metrics of population diversity and composition. RNAseq was performed on screening and on-treatment (C1D10/15) biopsies; gene expression deconvolution analyses were used to identify immune cell populations within the tumor microenvironment. Results : Avadomide treatment results in decreased peripheral CD4+ and CD8+ naïve (CD45RA+/CD45RO-) T cells and increased memory (CD45RA-/CD45RO+) and activated (HLA-DR+) T cells, without significantly affecting the absolute numbers of total CD3+, CD4+ or CD8+ populations (Table). High-dimensional single-cell mass cytometry of longitudinally collected peripheral blood samples confirmed the significant increase in CD8+ memory T cells and identified an increase in Treg populations and decreases in CD16+ monocytes and dendritic cells (adj. P<0.02). A single dose of avadomide on C1D1 significantly activated T cells, as indicated by a 300% increase in IL-2 (P=0.018) and 185% increase in IFNγ (P=0.003) secretion. Assessment of TCR B clonotypes revealed that avadomide increases the TCRB repertoire breadth, while reducing its clonality. To understand the influence of avadomide treatment on the tumor microenvironment, we performed RNA sequencing on tumor biopsies collected at screening and two weeks after initiating avadomide treatment (n=18 patients). Deconvolution analyses identified an increase in the expression of genes indicative of various T cell populations, dendritic cells and macrophages, while B cell associated gene expression decreased in on-treatment biopsies compared to screening biopsies. Gene set enrichment analysis (GSEA) revealed significantly increased expression of genes associated with "HALLMARK Interferon Alpha Response" (adj. P=0.04), indicative of an increase in Type I/II interferon production by cells such as T and NK cells. Buttressing the in vitro observations of avadomide-mediated inhibition of DLBCL cell proliferation, GSEA identified a decrease in "E2F targets" (adj. P=0.007) consistent with decreased proliferation of malignant B cells. Conclusion : Avadomide is a potent immunomodulating agent with multiple immune activating properties, including positive effects on T cell activation, as well as a broad expansion of T cell populations as defined by an increase in the richness of the T cell repertoire in blood. In addition, our data demonstrate decreased proliferation of malignant B cells in the tumor, with concomitant increased trafficking of immune cells, such as dendritic cells and macrophages, to the tumor microenvironment. These data further delineate the immune enhancing activity of avadomide in DLBCL patients beyond T-cell activation and provide rational combination strategies. Table. Table. Disclosures Hagner: Celgene Corporation: Employment, Equity Ownership. Towfic:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Pourdehnad:Celgene Corporation: Employment, Equity Ownership. Gandhi:Celgene Corporation: Employment, Equity Ownership.


Allergy ◽  
2011 ◽  
Vol 67 (2) ◽  
pp. 191-200 ◽  
Author(s):  
D. J. Martino ◽  
A. Bosco ◽  
K. L. McKenna ◽  
E. Hollams ◽  
D. Mok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document