scholarly journals Imaging Advances in the Management of Kidney Cancer

2018 ◽  
Vol 36 (36) ◽  
pp. 3582-3590 ◽  
Author(s):  
Katherine M. Krajewski ◽  
Ivan Pedrosa

New developments in cross-sectional imaging, including contrast-enhanced ultrasound, dual-energy computed tomography, multiparametric magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography, together with novel application of existing and novel radiotracers, have changed the landscape of renal mass characterization (ie, virtual biopsy) as well as the detection of metastatic disease, prognostication, and response assessment in patients with advanced kidney cancer. A host of imaging response criteria have been developed to characterize the response to targeted and immune therapies and correlate with patient outcomes, each with strengths and limitations. Recent efforts to advance the field are aimed at increasing objectivity with quantitative techniques and the use of banks of imaging data to match the vast genomic data that are becoming available. The emerging field of radiogenomics has the potential to transform further the role of imaging in kidney cancer management through eventual noninvasive characterization of the tumor histology and genetic microenvironment in single renal masses and/or metastatic disease. We review of the effect of currently available imaging techniques in the management of patients with kidney cancer, including localized, locally advanced, and metastatic disease.

2006 ◽  
Vol 16 (06) ◽  
pp. 1671-1687 ◽  
Author(s):  
A. S. FOKAS ◽  
V. MARINAKIS

The imaging techniques of magnetoencephalography (MEG), computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT) are reviewed, and the analytical solutions of the relevant inverse problems are presented. The numerical implementation of the exact formulas yield accurate reconstructions for both realistic phantoms as well as real data.


2016 ◽  
Vol 1 (3) ◽  
pp. 247-251
Author(s):  
Laura Jáni ◽  
Lehel Bordi ◽  
Mirabela Morariu ◽  
Tiberiu Nyulas ◽  
István Kovács ◽  
...  

Abstract One of the most significant causes of heart failure is coronary heart disease and subsequent left ventricular dysfunction. The prognosis and perioperative mortality are influenced by left ventricular function, which is also an important predictor marker following revascularization. The evaluation of myocardial perfusion is of utmost importance in patients who present several symptoms before choosing cardiac catheterization as treatment. The evaluation of myocardial perfusion and myocardial viability leads to superior diagnostic and treatment algorithms, thus resulting in an important improvement in the outcomes of patients with coronary artery disease. Color Doppler myocardial imaging, single-photon emission computed tomography (SPECT), contrast perfusion echocardiography, positron emission computed tomography (PET) and magnetic resonance imaging (MRI) are currently used methods for assessing myocardial perfusion. This review aims to summarize the benefits and disadvantages of each of these techniques.


2018 ◽  
Vol 31 (6) ◽  
pp. 596-608 ◽  
Author(s):  
Josef Finsterer ◽  
Sinda Zarrouk-Mahjoub

Objectives Because the central nervous system (CNS) is the second most frequently affected organ in mitochondrial disorders (MIDs) and since paediatric MIDs are increasingly recognised, it is important to know about the morphological CNS abnormalities on imaging in these patients. This review aims at summarising and discussing current knowledge and recent advances concerning CNS imaging abnormalities in paediatric MIDs. Methods A systematic literature review was conducted. Results The most relevant CNS abnormalities in paediatric MIDs on imaging include white and grey matter lesions, stroke-like lesions as the morphological equivalent of stroke-like episodes, cerebral atrophy, calcifications, optic atrophy, and lactacidosis. Because these CNS lesions may be seen with or without clinical manifestations, it is important to screen all MID patients for cerebral involvement. Some of these lesions may remain unchanged for years whereas others may be dynamic, either in the sense of progression or regression. Typical dynamic lesions are stroke-like lesions and grey matter lesions. Clinically relevant imaging techniques for visualisation of CNS abnormalities in paediatric MIDs are computed tomography, magnetic resonance (MR) imaging, MR spectroscopy, single-photon emission computed tomography, positron-emission tomography, and angiography. Conclusions CNS imaging in paediatric MIDs is important for diagnosing and monitoring CNS involvement. It also contributes to the understanding of the underlying pathomechanisms that lead to CNS involvement in MIDs.


2010 ◽  
Vol 1 (1) ◽  
pp. 31-34
Author(s):  
Shubhasini A Raghavan

ABSTRACT Cancer is a scourge that affects millions of the world population. The incidence of oral cancer is alarmingly high in the Indian subcontinent. What is more appalling is the low survival rate of these patients. Various efforts are being made to bring about early diagnosis, accurate staging and aggressive treatment. Molecular imaging is one step in this direction. Today, imaging plays a role not just in detecting what is radiopaque and what is radiolucent, but also plays a very active role in detecting disease down to the level of a single cell. The field of molecular imaging has been defined as ‘the visualization, characterization, and measurement of biologic processes at molecular and cellular levels in humans and other living systems’. The amalgamation of advanced imaging techniques such as Positron Emission Tomography and Single Photon Emission Computed Tomography with Computed Tomography, the use of newer contrast agents, incorporation of nanoparticles all have brought about these revolutionary changes in imaging. The purpose of this article is to describe the various techniques used in molecular imaging specifically highlighting their application in head and neck cancer.


2006 ◽  
Vol 21 (3) ◽  
pp. 1-9 ◽  
Author(s):  
Shivanand P. Lad ◽  
Raphael Guzman ◽  
Michael E. Kelly ◽  
Gordon Li ◽  
Michael Lim ◽  
...  

✓Vasospasm following cerebral aneurysm rupture is one of the most devastating sequelae and the most common cause of delayed ischemic neurological deficit (DIND). Because vasospasm also is the most common cause of morbidity and mortality in patients who survive the initial bleeding episode, it is imperative not only to diagnose the condition but also to predict which patients are likely to become symptomatic. The exact pathophysiology of vasospasm is complex and incompletely elucidated. Early recognition of vasospasm is essential because the timely use of several therapeutic interventions can counteract this disease and prevent the occurrence of DIND. However, the prompt implementation of these therapies depends on the ability to predict impending vasospasm or to diagnose it at its early stages. A number of techniques have been developed during the past several decades to evaluate cerebral perfusion, including positron emission tomography, xenon-enhanced computed tomography, single-photon emission computed tomography, perfusion- and diffusion-weighted magnetic resonance imaging, and perfusion computed tomography. In this article, the authors provide a general overview of the currently available perfusion imaging techniques and their applications in treating vasospasm after a patient has suffered a subarachnoid hemorrhage. The use of cerebral perfusion imaging techniques for the early detection of vasospasm is becoming more common and may provide opportunities for early therapeutic intervention to counteract vasospasm in its earliest stages and prevent the occurrence of DINDs.


2011 ◽  
Vol 13 (2) ◽  
pp. 225-234 ◽  

Biomarkers have been receiving increasing attention, especially in the field of psychiatry In contrast to the availability of potent therapeutic tools including pharmacotherapy, psychotherapy, and biological therapies, unmet needs remain in terms of onset of action, stability of response, and further improvement of the clinical course. Biomarkers are objectively measured characteristics which serve as indicators of the causes of illnesses, their clinical course, and modification by treatment. There exist a variety of markers: laboratory markers which comprise the determination of genetic and epigenetic markers, neurotransmitters, hormones, cytokines, neuropeptides, enzymes, and others as single measures; electrophysiological markers which usually comprise electroencephalography (EEG) measures, and in particular sleep EEG and evoked potentials, magnetic encephalography, electrocardiogram, facial electromyography, skin conductance, and others; brain imaging techniques such as cranial computed tomography, magnetic resonance imaging, functional MRI, magnetic resonance spectroscopy, positron emission tomography, and single photon emission computed tomography; and behavioral approaches such as cue exposure and challenge tests which can be used to induce especially emotional processes in anxiety and depression. Examples for each of these domains are provided in this review. With a view to developing more individually tailored therapeutic strategies, the characterization of patients and the courses of different types of treatment will become even more important in the future.


Author(s):  
Malgorzata Solnik ◽  
Natalia Paduszynska ◽  
Anna M. Czarnecka ◽  
Kamil J. Synoradzki ◽  
Yacoub A. Yousef ◽  
...  

Uveal melanoma is the most common primary intraocular malignancy in adults characterized by insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, biopsy followed by pathological exam is not recommended in ophthalmic oncology. Therefore, early and non-invasive diagnosis is essential to enhance patients’ chances for early treatment possibilities. We reviewed imaging modalities currently used in the diagnosis of uveal melanoma, i.e., fundus imaging, ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF). The principle of imaging techniques was briefly explained, along with their role in the diagnostic process and a summary of their advantages and limitations. Further, the experimental data and the advancements in imaging modalities were searched. We described their innovations, showed current usage and research, and explained the possibilities of utilizing them to diagnose uveal melanoma and their potential application in personalized medicine such as theranostics.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Aneesh K. Ramaswamy ◽  
Mark Hamilton ◽  
Rucha V. Joshi ◽  
Benjamin P. Kline ◽  
Rui Li ◽  
...  

Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics.In vivoimaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease.


Early finding and analysis of brain tumor are essential to enhance the surgical planning and thus extend the survival of patients. Medical imaging techniques (MIT’s) are useful to view the internal structure of the brain which makes the medical professional to diagnose abnormal conditions and guide therapeutic procedures. Few MIT’s are handling in the medical industry to identify the brain tumor and each technique has different risks and benefits. The concerning techniques are single photon emission computed tomography (SPECT), computed tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), functional MRI (fMRI), and blood oxygen level dependent (BOLD). This paper presents the importance of MIT’s in brain tumor treatment.


2020 ◽  
Vol 26 (10) ◽  
pp. 1470-1484 ◽  
Author(s):  
Mariane Le Fur ◽  
Iris Y Zhou ◽  
Onofrio Catalano ◽  
Peter Caravan

Abstract Inflammatory bowel disease (IBD) is defined by a chronic relapsing and remitting inflammation of the gastrointestinal tract, with intestinal fibrosis being a major complication. The etiology of IBD remains unknown, but it is thought to arise from a dysregulated and excessive immune response to gut luminal microbes triggered by genetic and environmental factors. To date, IBD has no cure, and treatments are currently directed at relieving symptoms and treating inflammation. The current diagnostic of IBD relies on endoscopy, which is invasive and does not provide information on the presence of extraluminal complications and molecular aspect of the disease. Cross-sectional imaging modalities such as computed tomography enterography (CTE), magnetic resonance enterography (MRE), positron emission tomography (PET), single photon emission computed tomography (SPECT), and hybrid modalities have demonstrated high accuracy for the diagnosis of IBD and can provide both functional and morphological information when combined with the use of molecular imaging probes. This review presents the state-of-the-art imaging techniques and molecular imaging approaches in the field of IBD and points out future directions that could help improve our understanding of IBD pathological processes, along with the development of efficient treatments.


Sign in / Sign up

Export Citation Format

Share Document