Targeting MHC-linked wild type p53 with TCR mimic single chain diabody for cancer immunotherapy.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2524-2524
Author(s):  
Suman Paul ◽  
Jacqueline Douglass ◽  
Annika Schaefer ◽  
Emily Han-Chung Hsiue ◽  
Alexander Pearlman ◽  
...  

2524 Background: Increased tumor suppressor protein p53 expression is observed in a wide range of human cancers. As a result there is intense interest in targeting p53 for cancer therapy. Intracellular p53 is inaccessible to therapeutic antibodies that bind cell surface proteins. However, intracellular proteins including p53 are degraded into peptides that are presented on cell surface in association with HLA class I molecules. Thus p53 peptide-HLA (p53-HLA) complexes can be antibody targets. Methods: Using phage display we identified a novel anti-p53-HLA single chain variable fragment (scFv) clone-43 that recognizes a wild-type p53 10-mer epitope bound to HLA-A*2402. By coupling our clone-43 scFv with an anti-CD3 scFv, we generated a single chain diabody (scDb) designed to activate T-cells against p53-expressing target cells. Results: In-vitro co-culture of clone-43 scDb with donor human T-cells and p53 expressing SIG-M5 cancer cells results in SIG-M5 cell killing and concomitant T-cell interferon gamma (IFNγ) release. In contrast, similar co-culture with SIG-M5 p53-knock out (KO) cells showed no cell killing and minimal IFNγ release demonstrating specificity of clone-43 to p53 expressing cells. Additionally, in-vivo growth of p53 expressing SW480 cancer cell xenografts in NSG mice was completely terminated by clone-43 scDb injections. A major concern for wild-type p53 epitope targeting is potential on-target off-tumor effect on non-cancerous tissue. We observed significant in-vitro clone-43 scDb mediated killing of human HLA-A*24:02 peripheral blood mononuclear cells. To better evaluate effect of clone-43 scDb on non-neoplastic human cells, we engrafted HLA-A*24:02 human CD34+ hematopoietic stem cells into NSG mice to generate a humanized mouse model with circulating mature human CD45+ cells. Clone-43 scDb treatment resulted in selective depletion of circulating human cells while the same cells persisted in mice treated with unrelated control scDb. Conclusions: Our observation that immune targeting of wild-type p53 epitope results in significant off-tumor hematopoietic cell death is contrary to previously published reports and carries important implications for future anti-p53 antibody and vaccine design for cancer immunotherapy.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A246-A246
Author(s):  
Yang Liu ◽  
Yan Zhang ◽  
Xuexiang Du ◽  
Mingyue Liu ◽  
Xianfeng Fang ◽  
...  

BackgroundAnti-CTLA-4 antibodies have brought about limited clinical benefit because severe toxicity limits dosing levels and/or duration. We used CTLA-4 knockin mice to screen for antibodies with higher anti-tumor activity but lower autoimmunity. We have revealed that the key for better safety and preclinical efficacy is preservation of CTLA-4 for immune tolerance and intratumorial Treg depletion. Our work established that, independent of blocking activities, mAbs that preserve CTLA-4 recycling maintain the physiological immune tolerance checkpoint function while allowing more efficient and selective elimination of tumor-infiltrating regulatory T cells, resulting in highest efficacy and lowest toxicity and was thus developed for clinical testing of all antibodies tested.1–6 The antibody with best safety and efficacy profile, ONC-392 was developed for clinical testing. The first-in human studies showed that ONC-392 is safe and well tolerated. Remarkably, no irAE has been reported among patients who has received repeated dosing of 3.0 mg/kg and 10.0 mg/kg of ONC-392. The molecular and cellular characterization of ONC-392 will be presented.MethodsIn vitro binding and disassociation assay were determined between pH 4.0–7.0. The intracellular traffic of both antibodies and CTLA-4 molecules were visualized by confocal microscopy. The binding to human and mouse FcgRI, IIA, IIB, and III (A), FcRn as well as mouse FcgRIV were evaluated by surface plasmon resonance (SPR). Depletion of regulatory T cells in tumor and lymphoid tissues were determined by flow cytometry.ResultsONC-392 is a pH-sensitive antibody that preserves CTLA-4 recycling. By preserving cell surface CTLA-4, Onco-392 preserves immune tolerance. Preserving CTLA-4 on tumor-infiltrating Treg contribute to more effective immunotherapy. In addition to its unique feature of pH sensitive binding, OncoC4 also have several important features in Fc. ONC-392 shown comparable binding to human FcgRI and IIIA as wild-type IgG1s. As expected from the mutations introduced, ONC-392 show about 6 fold higher affinity for FcRn than wild-type IgG1. Interestingly, ONC-392 has shown 7–10-fold reduction to FcgRIIB, which is generally considered to be a negative signaling FcR. ONC-392 binding to mouse FcgRI-IV was lower that WT IgG1.ConclusionsUnlike other clinical anti-CTLA-4 antibodies, ONC-392 preserves CTLA-4 recycling and thus Treg function in the peripheral tissues. The higher cell surface CTLA-4 allows more efficient Treg depletion in the tumor microenvironment. In addition, despite reduced binding to mouse activating Fc?RI, III/IV, ONC-392 was more effective in intratumor Treg depletion in the mice. Therefore, lacking negative signaling from Fc?RIIB may also contribute to its anti-tumor activity.Trial RegistrationNCT04140526ReferencesDu X, et al. Uncoupling therapeutic from immunotherapy-related adverse effects for safer andeffective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res 2018;28:433–447.Du X, et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res 2018;28:416–432.Liu Y, Zheng P. How does an anti-CTLA-4 antibody promote cancer immunity? Trends Immunol 2018;39:953–956.Zhang Y, et al. Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Cell Res 2019;29:609–627.Liu Y, Zheng P. Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol Sci 2020;41(1):4–12.Zhang P, et al. Mechanism- and immune landscape-based ranking of therapeutic responsiveness of 22 major human cancers to next generation anti-CTLA-4 antibodies. Cancers 2020;12:284.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 142-142 ◽  
Author(s):  
Monica Casucci ◽  
Benedetta Nicolis di Robilant ◽  
Laura Falcone ◽  
Barbara Camisa ◽  
Margherita Norelli ◽  
...  

Abstract Introduction Off-tumor expression of the target antigen raises justified safety concerns about newly designed chimeric antigen receptors (CARs). We have recently developed a CAR targeting the tumor-promoting antigen CD44v6 and demonstrated potent antitumor effects against acute myeloid leukemia (AML) and multiple myeloma (MM) both in vitro and in vivo. Despite promising activity against epithelial tumors, the administration of the CD44v6-specific mAb used for deriving our CAR (bivatuzumab) showed reversible myelosuppression and mucositis when conjugated with radioisotopes, and severe skin toxicity when conjugated with the potent cytotoxic drug mertansine. Preclinically evaluating the potential off-tumor toxicities of CD44v6-targeted T cells is therefore crucial before they can be safely translated to the clinic. Aim To profile the off-tumor expression of CD44v6 and to verify the susceptibility of expressing cells to CAR-T cell killing. Results Quantitative RT-PCR analysis on a wide panel of cDNA from normal tissues revealed restricted CD44v6 expression on flat stratified epithelia, like the skin, albeit at considerably lower levels compared with primary leukemic blasts. We therefore addressed the issue of keratinocyte recognition in co-culture experiments. Strikingly, at the E:T ratios allowing the potent antitumor effects of CD44v6-targeted T cells, keratinocytes were not killed and there was no cytokine production. Interestingly, comparative analysis of accessory molecules showed that, differently from leukemic blasts, keratinocytes expressed significant lower levels of adhesion/costimulatory molecules, including (ICAM-1, LFA-3 and B7.2), but higher levels of the critical checkpoint molecule PD-L1. Of the different cells of the hematopoietic system analyzed, only circulating CD14+ monocytes expressed CD44v6 and were killed by CD44v6-targeted T cells. Interestingly, by immunohistochemistry, we found no CD44v6 expression on bone-marrow monocytes, lymph-node macrophages, brain microglia, liver Kuppfer cells and dermal macrophages, suggesting a low risk for by-stander toxicity against these tissues. Moreover, CD44v6-targeted T cells did not interfere with the generation of virus-specific CTLs by antigen-specific stimulation in vitro. Importantly, both RT-qPCR and FACS demonstrated lack of CD44v6 expression on hematopoietic stem cells (HSCs) and progenitors. Accordingly, CD44v6-targeted T cells did not interfere with their clonogenic potential in vitro and, in co-culture experiments with whole bone marrow from MM patients, were able to selectively eliminate tumor cells, while sparing HSCs and progenitors. Finally, we tested the potential hematological toxicities of CD44v6-targeted T cells in NSG mice transgenic for human IL-3, SCF and GM-CSF (NSG-3GS). NSG-3GS mice transplanted with human CD34-selected cord blood cells showed enhanced myeloid reconstitution compared to NSG mice, including CD44v6+ monocytes. The infusion of CD44v6-targeted T cells in reconstituted NSG-3G mice resulted in the selective elimination of monocytes, but in the preservation of other cell subsets. Importantly, after in vivo exhaustion of CD44v6-targeted T cells, NSG-3G mice reconstituted monocytes de novo, indicating preservation of the HSC pool. For enabling rapid and conditional ablation of CD44v6-targeted T cells, we have finally co-expressed the CD44v6-CAR with TK or the inducible caspase-9 and validated the suicide gene approach in hyperacute xenogeneic GVHD surrogating maximal toxicity. Conclusions Our results indicate that off-tumor target expression levels do not automatically predict the susceptibility to CAR T-cell killing. Moreover they suggest that, differently from mAb-derived pharmaceuticals, therapeutic doses of suicidal CD44v6-targeted T cells might associate with acceptable and/or reversible toxicities. Disclosures: Bordignon: MolMed SpA: Employment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A635-A635
Author(s):  
Jeffrey Zhang ◽  
Everett Henry ◽  
L Harris Zhang ◽  
Wanying Zhang

BackgroundResveratrol (3,4’,5-trihydroxystilbene), a stilbenoid isolated from many species of plants, is widely known for its antioxidative, anti-inflammatory, immunomodulatory and anticancer activities. Recently, novel resveratrol oligomers have been isolated from various plants; their diverse structures are characterized by the polymerization of two or more resveratrol units. Little is known regarding the anticancer and immunomodulating activities of these oligomers. In this study, we designed in vitro models to compare resveratrol side by side with its natural dimer NBT-167 for their anticancer and immunological activities.MethodsWe isolated resveratrol and its dimer (NBT-167) from plants. The potency of the compounds was compared side by side using cancer cell survival assays and immunological assays with various types of human cells including cancer cell lines, PBMCs and enriched NK, gamma delta T cells, THP-1 monocytic cells, HL-60 promyelocytic leukemia cells as well as mouse RAW264.7 macrophages.ResultsNBT-167 was found to be more potent than resveratrol in inhibiting growth of various cancer cells and modulation of cytokine production from anti-IgM, LPS, PHA or SEB stimulated PBMC. Both compounds similarly enhanced IL-2 stimulated NK and gamma delta T cell killing activity against K562 cells and modulated nitric oxide production from LPS/IFN-g induced RAW264.7 macrophages and phagocytotic activity of HL-60 cells. NBT-167 was slightly more potently than resveratrol in inhibiting chemotaxis of HL-60 cells and blocking cell cycle of THP-1 and HL-60 cells at G1/S transition. In addition, NBT-167, but not resveratrol, could increase IL-2 production and T cell proliferation stimulated with anti-CD3 and anti-CD28 and synergize with anti-PD-1 antibody to increase IL-2 and IFN-gamma production in co-culture of allotypic T cells and dendric cells (MLR).ConclusionsOur data showed that NBT-167, a dimer of resveratrol, had anticancer and immunomodulatory activities such as modulation of expression of cytokines in immune cells and induction of cancer cell-killing activities of NK and gamma delta T cells. Generally, NBT-167 appeared to have higher activities than resveratrol in modulating immune cells and inhibiting cancer cells. NBT-167 could be a promising cancer immunotherapeutic agent targeting both cancer cells and immune cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


1995 ◽  
Vol 15 (8) ◽  
pp. 4249-4259 ◽  
Author(s):  
A M Yahanda ◽  
J M Bruner ◽  
L A Donehower ◽  
R S Morrison

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.


2000 ◽  
Vol 74 (7) ◽  
pp. 3353-3365 ◽  
Author(s):  
Chi-Long Lin ◽  
Che-Sheng Chung ◽  
Hans G. Heine ◽  
Wen Chang

ABSTRACT An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L−) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L− mutant virus. IMV from the H3L− mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L− mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.


Oncogene ◽  
2004 ◽  
Vol 23 (13) ◽  
pp. 2305-2314 ◽  
Author(s):  
David Cervi ◽  
Amandine H L Truong ◽  
Jane S Lee ◽  
Natasha Sukhai ◽  
You-Jun Li ◽  
...  

2004 ◽  
Vol 72 (8) ◽  
pp. 4432-4438 ◽  
Author(s):  
Xisheng Wang ◽  
Hoil Kang ◽  
Takane Kikuchi ◽  
Yasuhiro Suzuki

ABSTRACT We previously showed the requirement of both T cells and gamma interferon (IFN-γ)-producing non-T cells for the genetic resistance of BALB/c mice to the development of toxoplasmic encephalitis (TE). In order to define the role of IFN-γ production and the perforin-mediated cytotoxicity of T cells in this resistance, we obtained immune T cells from spleens of infected IFN-γ knockout (IFN-γ−/−), perforin knockout (PO), and wild-type BALB/c mice and transferred them into infected and sulfadiazine-treated athymic nude mice, which lack T cells but have IFN-γ-producing non-T cells. Control nude mice that had not received any T cells developed severe TE and died after discontinuation of sulfadiazine treatment due to the reactivation of infection. Animals that had received immune T cells from either wild-type or PO mice did not develop TE and survived. In contrast, nude mice that had received immune T cells from IFN-γ−/− mice developed severe TE and died as early as control nude mice. T cells obtained from the spleens of animals that had received either PO or wild-type T cells produced large amounts of IFN-γ after stimulation with Toxoplasma gondii antigens in vitro. In addition, the amounts of IFN-γ mRNA expressed in the brains of PO T-cell recipients did not differ from those in wild-type T-cell recipients. Furthermore, PO mice did not develop TE after infection, and their IFN-γ production was equivalent to or higher than that of wild-type animals. These results indicate that IFN-γ production, but not perforin-mediated cytotoxic activity, by T cells is required for the prevention of TE in genetically resistant BALB/c mice.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A679-A679
Author(s):  
Ying Zheng ◽  
Andriana Lebid ◽  
Andrew Pardoll ◽  
Juan Fu ◽  
Chirag Patel ◽  
...  

BackgroundActivins, members of the transforming growth factor-ß (TGF-ß) superfamily, were isolated and identified in endocrine system, and have been widely studied in endocrine-related cancers,1 2 but not substantially in the context of immune system and endocrine-unrelated cancers.3–5 It has been reported that upon binding to the receptors, activins cause the intracellular recruitment and phosphorylation of smad proteins, which mediate the expression of Foxp3.6–9 Therefore, we hypothesized that the blockade of the interaction of activins and their receptors will inhibit the activins-mediated Foxp3 induction in CD4+ T cells, thus modify the immune suppressive tumor microenvironment and achieve the goal of cancer immunotherapy.MethodsELISA (enzyme-linked immunosorbent assay) has been performed to determine the plasma level of Activin A in tumor-bearing mice and cancer patients. In vitro iTreg (induced regulatory T cells) differentiation has been done to naïve CD4+ cells isolated from wild type mice in the presence or absence of Activin A, and the percentage of Foxp3+ cells was demonstrated by flow cytometric analysis. qRT-PCR analysis has been conducted to determine the mRNA level of activin receptor isotypes in the immune subpopulations sorted from Foxp3-YFP mice. In the end, in vivo subcutaneous transplanted tumor studies have been done to evaluate the anti-tumor therapeutic effects of activin-receptor 1c blockade.ResultsWe show here that tumor-bearing mice had elevated Activin A levels, which correlated directly with tumor burden. Likewise, cancer patients had elevated plasma Activin A compared to healthy controls. Importantly, our in vitro studies suggested that Activin A promoted differentiation of conventional CD4+ cells into Foxp3-expressing induced Tregs, especially when TGF-ß was limited. Database and qRT-PCR analysis of sorted major immune cell subsets in mice revealed that activin receptor 1C (Acvr1c) was uniquely expressed on Tregs and was highly upregulated during iTreg differentiation. Mice deficient in Acvr1c were more resistant to cancer progression compared to wild type mice. This phenotype correlated with reduced expression of the FoxP3 transcription factor in CD4+ cells. Similar phenomena were observed when we treated the mice with anti-Acvr1c antibody after tumor inoculation. This anti-tumor therapeutic effect was more significant when anti-Acvr1c antibody was administrated in combination with anti-PD-1 antibody.ConclusionsBlocking Activin A signaling through its receptor 1c is a promising and disease-specific strategy for preventing the accumulation of immunosuppressive iTregs in cancer. Hence it represents a potential candidate for cancer immunotherapy.AcknowledgementsThis research is supported by the Bloomberg-Kimmel Institute (Immunometabolism Program & Immune Modulation Program), the Melanoma Research Alliance, the NIH (RO1AI099300, RO1AI089830, and R01AI137046), and The DoD (PC130767).ReferencesRisbridger GP, Schmitt JF, Robertson DM. Activins and inhibins in endocrine and other tumors. Endocr Rev 2001;22(6):836–858.Cui X, et al. Perspectives of small molecule inhibitors of activin receptor-like kinase in anti-tumor treatment and stem cell differentiation (Review). Mol Med Rep 2019;19(6):5053–5062.Michael IP, et al. ALK7 signaling manifests a homeostatic tissue barrier that is abrogated during tumorigenesis and metastasis. Dev Cell 2019;49(3):409–424.Wu B, et al. The TGF-ß superfamily cytokine Activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation. Immunity 2021;54(2):308–323.Antsiferova M, et al. Activin promotes skin carcinogenesis by attraction and reprogramming of macrophages. MBO Mol Med 2017;9(1):27–45.Tsuchida K, et al. Activin isoforms signal through type I receptor serine/threonine kinase ALK7. Mol Cell Endocrinol 2004;220(1–2):59–65.Khalil AM, et al. Differential binding activity of TGF-ß family proteins to select TGF-ß receptors. J Pharmacol Exp Ther 2016;358(3):423–430.Huber S, et al. Activin a promotes the TGF-beta-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells. J Immunol 2009;182(8):4633–4640.Iizuka-Koga M, et al. Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. J Autoimmun 2017;83:113–121.Ethics ApprovalAll animal experiments were performed under protocols approved by the Johns Hopkins University Institutional Animal Care and Use Committee (IACUC).


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1517-1524 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
M. Willy Honders ◽  
Jim E. Landegent ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Deficiency of functional deoxycytidine kinase (dCK) is a common characteristic for in vitro resistance to cytarabine (AraC). To investigate whether dCK is also a target for induction of AraC resistance in patients with acute myeloid leukemia (AML), we determined dCK messenger RNA (mRNA) expression in (purified) leukemic blasts and phytohemagglutinin-stimulated T cells (PHA T cells) from patients with chemotherapy-sensitive and chemotherapy-resistant AML. In control samples from healthy donors (PHA T cells and bone marrow), only wild-type dCK complementary DNA (cDNA) was amplified. Also, in (purified) leukemic blasts from patients with sensitive AML, only wild-type dCK cDNAs were observed. These cDNAs coded for active dCK proteins in vitro. However, in 7 of 12 (purified) leukemic blast samples from patients with resistant AML, additional polymerase chain reaction fragments with a deletion of exon 5, exons 3 to 4, exons 3 to 6, or exons 2 to 6 were detected in coexpression with wild-type dCK. Deletion of exons 3 to 6 was also identified in 6 of 12 PHA T cells generated from the patients with resistant AML. The deleted dCK mRNAs were formed by alternative splicing and did code for inactive dCK proteins in vitro. These findings suggest that the presence of inactive, alternatively spliced dCK mRNA transcripts in resistant AML blasts may contribute to the process of AraC resistance in patients with AML.


Sign in / Sign up

Export Citation Format

Share Document