The effect of hepatic stellate cells on hepatocellular carcinoma progression.

2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 265-265
Author(s):  
Shuichi Iwahashi ◽  
Mitsuo Shimada ◽  
Yuji Morine ◽  
Satoru Imura ◽  
Tetsuya Ikemoto ◽  
...  

265 Background: The hepatic stellate cells (HSCs) localize at the space of Disse in the liver and have multiple functions. They are identified as the major contributor to hepatic fibrosis. Some manuscripts mentioned that activated HSCs predicted prognoses of hepatocellular carcinoma. The aim of this study is to investigate the effect of HSCs and the role of IL-6 / Stat3 pathway on HCC progression. Methods: HCC cells (Hep G2 and Huh 7) were co-cultured with HSC (LX2 and Li90). The viability and migration ability of cancer cells were detected. Also, the expression of epithelial–mesenchymal transition marker (E-cadherin), stem cell marker (EpCAM and CD44), TGF-b and p-STAT3 of cancer cells were evaluated. Then the IL-6 neutralization was performed during HCC cells and HSCs co-culture. The viability and migration ability of cancer cells were detected. Also, the expression of epithelial–mesenchymal transition marker (E-cadherin), stem cell marker (EpCAM and CD44) and p-STAT3 of cancer cells were evaluated. Results: Co-culture with hepatic stellate cell increased cancer cell viability and migration ability. The expression of E-cadherin, EpCAM and CD44 of cancer cells also increased after co-culture with HSCs. The IL-6 expression and secretion of HSCs were elevated by cancer cell stimulation. The over-expressed IL-6 activated STAT3 of cancer cell showed as the level of phosphorylated STAT3 increased. Neutralized IL-6 during co-culture significantly decrease the viability and migration ability of cancer cells. Also, the expression of E-cadherin, EpCAM and CD44 of cancer cells decreased. Conclusions: HSCs might promote HCC progression through IL-6 / STAT3 pathway.

2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


2015 ◽  
Vol 27 (1) ◽  
pp. 198 ◽  
Author(s):  
Y.-S. Kim ◽  
K.-C. Choi

The ovary is the important organ to produce oocytes. Any disorder will affect embryo production. Ovarian cancer is one of gynecologic cancers in women which can affect ovarian functions. Oestradiol (E2) may be involved in ovarian cell growth and epithelial-mesenchymal transition (EMT) for diverse functions. EMT is an important process in embryo development and tumour migration or progression. Bis-phenol A (BPA) and nonyl-phenol (NP) have an estrogenic property, which can be suspected as endocrine disrupting chemicals (EDC). In this study, it has been examined whether BPA and NP can cause EMT process and migration in BG-1 ovarian cancer cells. To confirm the effect of these EDCs, BG-1 ovarian cancer cells were cultured and treated with DMSO (0.1%), E2 (10–7 M), BPA (10–6 M) and NP (10–6 M) for 0, 6, and 24 h. The mRNAs were extracted to perform reverse-transcription (RT)-PCR and the changes in the mRNA expressions were analysed by ANOVA test. Following treatments with BPA and NP, alterations of EMT markers; that is, vimentin and E-cadherin, were examined at mRNA levels by RT-PCR. The levels of vimentin were up-regulated by E2, BPA, or NP in a time-dependent manner. In addition, transcriptional factors of EMT response, i.e. snail and slug, were enhanced by these treatments more than 2 times. BG-1 cells were exposed to these EDCs for 0, 24, and 48 h. Vimentin and snail proteins were induced by E2, BPA, or NP, while the expression of E-cadherin was decreased by them. To reveal that this EMT response is affected by oestrogen receptor (ER), the cells were treated with these EDCs in the presence of an ER antagonist, ICI 182 780 (10–6 M). Treatment with ICI 182 780 reversed EDC-induced alteration of these EMT markers, E-cadherin, vimentin, and snail. Since EMT response can cause metastasis, a scratch assay was performed to show migration caused by BPA or NP. BPA or E2 enhanced migratory capability of these BG-1 cells. Taken together, these results indicate that BPA and NP, potential EDC, may have an ability to influence ovarian cancer metastasis via regulating snail and slug genes in ER-positive ovarian cancers. In a future study, their effects in inducing EMT and migration will be tested in a xenograft mouse model.This work was supported by a grant from the Next-Generation BioGreen 21 Program (no. PJ009599), Rural Development Administration, Republic of Korea.


Author(s):  
Xiao Li ◽  
Wei Liu ◽  
Chong Geng ◽  
Tingting Li ◽  
Yanni Li ◽  
...  

Invasion and metastasis are the major causes leading to the high mortality of colon cancer. Ginsenoside Rg3 (Rg3), as a bioactive ginseng compound, is suggested to possess antimetastasis effects in colon cancer. However, the underlying molecular mechanisms remain unclear. In this study, we reported that Rg3 could effectively inhibit colon cancer cell invasion and metastasis through in vivo and in vitro studies. In addition, Rg3 suppressed the epithelial–mesenchymal transition (EMT) of HCT15 cells and SW48 cells evidenced by detecting EMT related markers E-cadherin, vimentin, and snail expression. Furthermore, inhibition of Notch signaling by LY411,575 or specific Hes1 siRNA obviously repressed colon cancer cell migration and metastasis, and induced increase in E-cadherin and decrease in vimentin and snail. Meanwhile, the expression of NICD and Hes1 was obviously decreased in the presence of Rg3. However, Rg3 failed to suppress EMT in Hes1 overexpressed colon cancer cells. In particular, Rg3 significantly reversed IL-6-induced EMT promotion and blocked IL-6- induced NICD and Hes1 upregulations. Overall, these findings suggested that Rg3 could inhibit colon cancer migration and metastasis via suppressing Notch-Hes1-EMT signaling.


Author(s):  
Anuka Sharma ◽  
Harmandeep Kaur ◽  
Renaissa De ◽  
Radhika Srinivasan ◽  
Arnab Pal ◽  
...  

Cervical cancer is one of the leading causes of mortality amongst women in developing countries and therapy resistance is the main reason for its treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo resistant behavior of cervical cancer cells. In our study the CSC phenotype cells were isolated and the expression of stem cell marker and epithelial-mesenchymal transition (EMT) associated gene was confirmed by various assays. However, these CSC phenotype cells cannot be cultured for further cytotoxicity studies. So, we tried to establish a CSC model in cervical cancer cells. We performed the siRNA-mediated knockdown of E-cadherin (E-cad) in these cells and studied EMT associated stem cell-like properties in them. We also performed dose dependent cell viability assay using clinically relevant drugs such as cisplatin, cyclopamine and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that E-cad knockdown induces EMT in cervical cancer cells imparting stem-cell like characteristics along with enhanced tumorsphere formation, migration, invasion ability and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cad which can be utilized for development of anti-cancer therapies.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yawei Wang ◽  
Yingying Sun ◽  
Chao Shang ◽  
Lili Chen ◽  
Hongyu Chen ◽  
...  

AbstractRing1b is a core subunit of polycomb repressive complex 1 (PRC1) and is essential in several high-risk cancers. However, the epigenetic mechanism of Ring1b underlying breast cancer malignancy is poorly understood. In this study, we showed increased expression of Ring1b promoted metastasis by weakening cell–cell adhesions of breast cancer cells. We confirmed that Ring1b could downregulate E-cadherin and contributed to an epigenetic rewiring via PRC1-dependent function by forming distinct complexes with DEAD-box RNA helicases (DDXs) or epithelial-mesenchymal transition transcription factors (EMT TFs) on site-specific loci of E-cadherin promoter. DDXs-Ring1b complexes moderately inhibited E-cadherin, which resulted in an early hybrid EMT state of epithelial cells, and EMT TFs-Ring1b complexes cooperated with DDXs-Ring1b complexes to further repress E-cadherin in mesenchymal-like cancer cells. Clinically, high expression of Ring1b with DDXs or EMT TFs predicted low levels of E-cadherin, metastatic behavior, and poor prognosis. These findings provide an epigenetic regulation mechanism of Ring1b complexes in E-cadherin expression. Ring1b complexes may be potential therapeutic targets and biomarkers for diagnosis and prognosis in invasion breast cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xian Liu ◽  
Qian Feng ◽  
Yanru Zhang ◽  
PengSheng Zheng ◽  
Nan Cui

Abstract Background Slug (Snai2) is a pivotal player in initiating epithelial-mesenchymal transition (EMT) through its trans-suppression effect on E-cadherin in various normal and malignant cells. In this study, the positive effect of Slug on promoting cell motility and metastasis in cervical cancer was further confirmed in this study. Methods RNA-Seq was performed to explore the potential molecules that participate in Slug-mediated EMT in cervical cancer cells. The negative correlation between Slug and EpCAM expression in cervical cancer cells was detected in this study, and linked them with in vitro migration and invasion assay, in vivo metastasis experiments, luciferase reporter assay and Chromatin immunoprecipitation. Results Transcriptome sequencing analysis revealed that epithelial cell adhesion molecule (EpCAM) was significantly decreased in Slug-overexpressing SiHa cells. Simultaneously, an absence of EpCAM expression was observed in Slug-overexpressing cells. Further studies revealed the trans-suppression effect of Slug on EpCAM through its binding to the E-boxes in the proximal promoter region of EpCAM in cervical cancer cells. Restoring EpCAM in Slug-overexpressing cells by transiently transfecting an EpCAM recombinant plasmid attenuated cell motility and promoted cell growth. Moreover, the negative correlation between Slug and EpCAM expression in human squamous cervical carcinoma (SCC) samples was verified by using Pearson correlation analysis. Conclusions These results demonstrated that the absence of EpCAM under Slug expression in cervical cancer cells probably participated in Slug-regulated EMT and further promoted tumor metastasis. Additionally, this study supports a potential way for Slug to initiate EMT progression in cervical cancer cells in addition to inhibiting E-cadherin.


2022 ◽  
Vol 12 (4) ◽  
pp. 820-826
Author(s):  
Chengyong Wu ◽  
Weifeng Wei ◽  
Jing Li ◽  
Shenglin Peng

Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear. The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document