Increased neutrophil infiltration and lower prevalence of tumor mutation burden and microsatellite instability are hallmarks of RAS mutant colorectal cancers.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3563-3563
Author(s):  
Emil Lou ◽  
Yasmine Baca ◽  
Joanne Xiu ◽  
Andrew Nelson ◽  
Subbaya Subramanian ◽  
...  

3563 Background: The tumor microenvironment (TME) of colorectal cancers (CRC) is modulated by oncogenic drivers such as KRAS. The TME comprises a broad landscape of immune infiltration. How tumor genomics associates with the immune cell landscape is less known. We aim to characterize immune cell types in RAS wild-type (WT) and mutant (MT) CRC, and to examine the prevalence of immuno-oncologic (IO) biomarkers (e.g. tumor mutation burden (TMB), PD-L1, MSI-H/dMMR) in these tumors. We performed genomic and transcriptomic analysis to confirm associations of mutant RAS with immune infiltration of the TME conducive to metastasis vs. potential response to immunotherapies. Methods: A total of 7,801 CRC were analyzed using next-generation sequencing on DNA (NextSeq, 592 Genes and WES, NovaSEQ), RNA (NovaSeq, whole transcriptome equencing) and IHC (Caris Life Sciences, Phoenix, AZ). MSI/MMR was tested by FA, IHC and NGS. TMB-H was based on a cut-off of > 10 mutations per MB). Immune cell fraction was calculated by QuantiSeq (Finotello 2019, Genome Medicine). Significance was determined by X2 and Fisher-Exact and p adjusted for multiple comparisons (q) was <0.05. Results: Mutant KRAS was seen in 48% of mCRC tumors; NRAS in 3.7%, HRAS in 0.1%. The distribution was similar in patients < or >= than 50 yrs. In MSS tumors, there was a significantly higher neutrophil infiltration in KRAS MT (median cell fraction 6.6% vs. 5.9%) and NRAS MT (6.9%) overall and also when individual codons were studied. B cells, M2 macrophages, CD8+ T cells, dendritic cells and fibroblasts were lower in KRAS mutant tumors; B cells and M1 macrophages are lower in NRAS (q<0.05). dMMR/MSI-H was significantly more prevalent in RAS WT (9.1%) than in KRAS (2.9%) or NRAS MT (1.8%) tumors, and highest in HRAS MT tumors (60%, q<0.05).TMB-H was more prevalent in RAS WT (11%) than KRAS (5.8%) or NRAS (5.1%) MT, and highest in HRAS MT tumors (70%, all q<0.05). In MSS tumors, KRAS MT tumors showed more TMB-H than WT (3.1% vs. 2.1%, q<0.05), especially in KRAS non 12/13/61 mutations (5.5%, vs. 2.1%, q<0.05) and G12C (4.4%, p<0.05). PD-L1 expression was studied: in MSS tumors, KRAS-G12D (10.4%) and G13 MT (11.8%) showed higher mutation rates than RAS WT tumors (q<0.05). Conclusions: KRAS & NRAS mutations are associated with increased neutrophil abundance, with codon specific differences, while HRAS shows no difference. Overall CD8+ T cells and B cells are less abundant in KRAS & NRAS mutants; substantial variability was seen amongst different protein changes. RAS mutations were more prevalent overall than generally reported, but did not vary by age. These results demonstrate significant differences in the TME of RAS mutant CRC that identify variable susceptibilities to immuno-oncologic agents, and provide further detailed characterization of heterogeneity between RAS variants, at the molecular as well as immunogenic levels.

2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 494-494
Author(s):  
Yuanyuan Jia ◽  
Ning He ◽  
Yadong Yang ◽  
Yuliang Huang ◽  
Xiaoyu Zhang ◽  
...  

494 Background: Tumor mutation burden (TMB) has been established as a biomarker for response to immune therapy and prognosis in various cancers. However, the correlation between TMB and immune microenvironment remains unwell studied, especially in urothelial carcinoma. This study was aimed to investigate the relationship between TMB and other immunotherapy related biomarkers, including genetic alterations, APOBEC signature, microsatellite instability (MSI), PD-L1 expression and immune cell infiltration in urothelial carcinoma. Methods: 131 patients with urothelial carcinoma admitted from October 2018 to May 2020 were included. Total DNA was isolated from FFPE or fresh tissues. Mutation profiles, APOBEC signature and MSI scores were obtained by next-generation sequencing based a 642 cancer genes panel assay. PD-L1 expression, CD8+ T-cells and tumor-infiltrating lymphocytes density were evaluated by immunohistochemistry. The correlation was analyzed by Wilcoxon signed-rank test. Results: The mutation landscape showed that TP53 mutation is the most common alterations (n = 64/131, 48.9%), followed by KMT2D alterations (n = 49/131, 37.4%), KDM6A mutations (n = 42/131, 32.1%), MUC17 mutations (n = 42/131, 32.1%). The median TMB was 5.06 Muts/Mb (0-118 Muts/Mb). 2 of 131 patients showed MSI-H, who exhibited a much higher TMB (41, 118 Muts/Mb). Further analysis showed that TMB in the patients with certain gene mutations (such as TP53, KMT2D, KDM6A and MUC17) was significantly higher than those wild type ones (p < 0.05). Meanwhile, the high APOBEC-enrichment group has a higher TMB than the low APOBEC-enrichment group (p = 0.045). Furthermore,we observed that the patients with a higher PD-L1 expression (n = 28/131, 21.4%, at a combined positive score cut-off value of 10) also showed a significantly higher TMB (p = 0.016), and TMB in the patients with higher density of CD8+ T-cells (n = 42/131, 32.1%, at a cut-off value of 5%) was also significantly higher than that of the group with lower density of CD8+ T-cells (p = 0.039). Conclusions: This study provides new insights into the correlation between the TMB and the immune microenvironment in urothelial carcinoma. The result may be a reference to immunotherapy.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Zihao Chen ◽  
Guojun Liu ◽  
Guoqing Liu ◽  
Mikhail A. Bolkov ◽  
Khyber Shinwari ◽  
...  

AbstractImmunotherapy, especially anti-PD-1, is becoming a pillar of modern muscle-invasive bladder cancer (MIBC) treatment. However, the objective response rates (ORR) are relatively low due to the lack of precise biomarkers to select patients. Herein, the molecular subtype, tumor mutation burden (TMB), and CD8+ T cells were calculated by the gene expression and mutation profiles of MIBC patients. MIBC immunotypes were constructed using clustering analysis based on tumor mutation burden, CD8+ T cells, and molecular subtypes. Mutated genes, enriched functional KEGG pathways and GO terms, and co-expressed network-specific hub genes have been identified. We demonstrated that ORR of immunotype A patients identified by molecular subtype, CD8+ T cells, and TMB is about 36% predictable. PIK3CA, RB1, FGFR3, KMT2C, MACF1, RYR2, and EP300 are differentially mutated among three immunotypes. Pathways such as ECM-receptor interaction, PI3K-Akt signaling pathway, and TGF-beta signaling pathway are top-ranked in enrichment analysis. Low expression of ACTA2 was associated with the MIBC survival benefit. The current study constructs a model that could identify suitable MIBC patients for immunotherapy, and it is an important step forward to the personalized treatment of bladder cancers.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1118-1118 ◽  
Author(s):  
Elisabeth A Lasater ◽  
An D Do ◽  
Luciana Burton ◽  
Yijin Li ◽  
Erin Williams ◽  
...  

Abstract Introduction: Intrinsic apoptosis is regulated by the BCL-2 family of proteins, which consists of both anti-apoptotic (BCL-2, BCL-XL, MCL-1) and pro-apoptotic (BIM, BAX, BAK, BAD) proteins. Interaction between these proteins, as well as stringent regulation of their expression, mediates cell survival and can rapidly induce cell death. A shift in balance and overexpression of anti-apoptotic proteins is a hallmark of cancer. Venetoclax (ABT-199/GDC-0199) is a potent, selective small molecule BCL-2 inhibitor that has shown preclinical and clinical activity across hematologic malignancies and is approved for the treatment of chronic lymphocytic leukemia with 17p deletion as monotherapy and in combination with rituximab. Objective: To investigate the effects of BCL-2 inhibition by venetoclax on viability and function of immune-cell subsets to inform combinability with cancer immunotherapies, such as anti-PD-L1. Methods and Results: B cells, natural killer (NK) cells, CD4+ T cells, and CD8+ T cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (n=3) were exposed to increasing concentrations of venetoclax that are clinically achievable in patients, and percentage of live cells was assessed by flow-cytometry using Near-IR cell staining. B cells were more sensitive to venetoclax (IC50 of ~1nM) than CD8+ T cells (IC50 ~100nM), NK cells (IC50 ~200nM), and CD4+ T cells (IC50 ~500nM) (Figure A). CD8+ T-cell subset analysis showed that unstimulated naive, but not memory cells, were sensitive to venetoclax treatment (IC50 ~30nM and 240nM, respectively). Resistance to venetoclax frequently involves compensation by other BCL-2 family proteins (BCL-XL and MCL-1). As assessed by western blot in PBMCs isolated from healthy donors (n=6), BCL-XL expression was higher in NK cells (~8-fold) and CD4+ and CD8+ T cells (~2.5-fold) than in B cells (1X). MCL-1 protein expression was higher only in CD4+ T cells (1.8-fold) relative to B cells. To evaluate the effect of venetoclax on T-cell function, CD8+ T cells were stimulated ex vivo with CD3/CD28 beads, and cytokine production and proliferation were assessed. Venetoclax treatment with 400nM drug had minimal impact on cytokine production, including interferon gamma (IFNg), tumor necrosis factor alpha (TNFa), and IL-2, in CD8+ effector, effector memory, central memory, and naïve subsets (Figure B). CD8+ T-cell proliferation was similarly resistant to venetoclax, as subsets demonstrated an IC50 >1000nM for venetoclax. Taken together, these data suggest that survival of resting NK and T cells in not impaired by venetoclax, possibly due to increased levels of BCL-XL and MCL-1, and that T-cell activation is largely independent of BCL-2 inhibition. To evaluate dual BCL-2 inhibition and PD-L1 blockade, the syngeneic A20 murine lymphoma model that is responsive to anti-PD-L1 treatment was used. Immune-competent mice bearing A20 subcutaneous tumors were treated with clinically relevant doses of venetoclax, murine specific anti-PD-L1, or both agents. Single-agent anti-PD-L1 therapy resulted in robust tumor regression, while single-agent venetoclax had no effect. The combination of venetoclax and anti-PD-L1 resulted in efficacy comparable with single-agent anti-PD-L1 (Figure C), suggesting that BCL-2 inhibition does not impact immune-cell responses to checkpoint inhibition in vivo. These data support that venetoclax does not antagonize immune-cell function and can be combined with immunotherapy targets. Conclusions: Our data demonstrate that significant venetoclax-induced cell death at clinically relevant drug concentrations is limited to the B-cell subset and that BCL-2 inhibition is not detrimental to survival or activation of NK- or T-cell subsets. Importantly, preclinical mouse models confirm the combinability of BCL-2 and PD-L1 inhibitors. These data support the combined use of venetoclax and cancer immunotherapy agents in the treatment of patients with hematologic and solid tumor malignancies. Figure Figure. Disclosures Lasater: Genentech Inc: Employment. Do:Genentech Inc: Employment. Burton:Genentech Inc: Employment. Li:Genentech Inc: Employment. Oeh:Genentech Inc: Employment. Molinero:Genentech Inc: Employment, Equity Ownership, Patents & Royalties: Genentech Inc. Penuel:Genentech Inc: Employment. Sampath:Genentech Inc: Employment. Dail:Genentech: Employment, Equity Ownership. Belvin:CytomX Therapeutics: Equity Ownership. Sumiyoshi:Genentech Inc: Employment, Equity Ownership. Punnoose:Roche: Equity Ownership; Genentech Inc: Employment. Venstrom:Genentech Inc: Employment. Raval:Genentech Inc: Consultancy, Employment, Equity Ownership.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangjian Zhou ◽  
Xin Xie ◽  
Xuan Wang ◽  
Xin Zhang ◽  
Wenxin Li ◽  
...  

BackgroundColon cancer has a huge incidence and mortality worldwide every year. Immunotherapy could be a new therapeutic option for patients with advanced colon cancer. Tumor mutation burden (TMB) and immune infiltration are considered critical in immunotherapy but their characteristics in colon cancer are still controversial.MethodsThe somatic mutation, transcriptome, and clinical data of patients with colon cancer were obtained from the TCGA database. Patients were divided into low or high TMB groups using the median TMB value. Somatic mutation landscape, differentially expressed genes, and immune-related hub genes, Gene Ontology and KEGG, gene set enrichment, and immune infiltration analyses were investigated between the two TMB groups. Univariate and multivariate Cox analyses were utilized to construct a prognostic gene signature. The differences in immune infiltration, and the expression of HLA-related genes and checkpoint genes were investigated between the two immunity groups based on single sample gene set enrichment analysis. Finally, a nomogram of the prognostic prediction model integrating TMB, immune infiltration, and clinical parameters was established. Calibration plots and receiver operating characteristic curves (ROC) were drawn, and the C-index was calculated to assess the predictive ability.ResultsMissense mutations and single nucleotide polymorphisms were the major variant characteristics in colon cancer. The TMB level showed significant differences in N stage, M stage, pathological stage, and immune infiltration. CD8+ T cells, activated memory CD4+ T cells, activated NK cells, and M1 macrophages infiltrated more in the high-TMB group. The antigen processing and presentation signaling pathway was enriched in the high-TMB group. Two immune related genes (CHGB and SCT) were identified to be correlated with colon cancer survival (HR = 1.39, P = 0.01; HR = 1.26, P = 0.02, respectively). Notably, the expression of SCT was identified as a risk factor in the immune risk model, in which high risk patients showed poorer survival (P = 0.04). High immunity status exhibited significant correlations with immune response pathways, HLA-related genes, and immune checkpoint genes. Finally, including nine factors, our nomogram prediction model showed better calibration (C-index = 0.764) and had an AUC of 0.737.ConclusionIn this study, we investigated the patterns and prognostic roles of TMB and immune infiltration in colon cancer, which provided new insights into the tumor microenvironment and immunotherapies and the development of a novel nomogram prognostic prediction model for patients with colon cancer.


2020 ◽  
Author(s):  
Zihao Chen ◽  
Guojun Liu ◽  
Guoqing Liu ◽  
Mikhail A. Bolkov ◽  
Khyber Shinwari ◽  
...  

Abstract Immunotherapy, especially anti-PD-1, is becoming a pillar of modern muscle-invasive bladder cancer (MIBC) treatment. However, the objective response rates (ORR) are relatively low due to the lack of precise biomarkers to select patients. Herein, the molecular subtype, tumor mutation burden (TMB), and CD8+ T cells were calculated by the gene expression and mutation profiles of MIBC patients. MIBC immunotypes were constructed using clustering analysis based on tumor mutation burden, CD8+ T cells, and molecular subtypes. Mutated genes, enriched functional KEGG pathways and GO terms, and co-expressed network-specific hub genes have been identified. We demonstrated that ORR of immunotype A patients identified by molecular subtype, CD8+ T cells, and TMB is about 36% predictable. PIK3CA , RB1 , FGFR3 , KMT2C , MACF1 , RYR2 , and EP300 are differentially mutated among three immunotypes. Pathways such as ECM-receptor interaction, PI3K-Akt signaling pathway, and TGF-beta signaling pathway are top-ranked in enrichment analysis. Low expression of ACTA2 was associated with the MIBC survival benefit. The current study constructs a model that could identify suitable MIBC patients for immunotherapy, and it is an important step forward to the personalized treatment of bladder cancers.Immunotherapy, especially anti-PD-1, is becoming a pillar of modern muscle-invasive bladder cancer (MIBC) treatment. However, the objective response rates (ORR) are relatively low due to the lack of precise biomarkers to select patients. Herein, the molecular subtype, tumor mutation burden (TMB), and CD8+ T cells were calculated by the gene expression and mutation profiles of MIBC patients. MIBC immunotypes were constructed using clustering analysis based on tumor mutation burden, CD8+ T cells, and molecular subtypes. Mutated genes, enriched functional KEGG pathways and GO terms, and co-expressed network-specific hub genes have been identified. We demonstrated that ORR of immunotype A patients identified by molecular subtype, CD8+ T cells, and TMB is about 36% predictable. PIK3CA , RB1 , FGFR3 , KMT2C , MACF1 , RYR2 , and EP300 are differentially mutated among three immunotypes. Pathways such as ECM-receptor interaction, PI3K-Akt signaling pathway, and TGF-beta signaling pathway are top-ranked in enrichment analysis. Low expression of ACTA2 was associated with the MIBC survival benefit. The current study constructs a model that could identify suitable MIBC patients for immunotherapy, and it is an important step forward to the personalized treatment of bladder cancers.


2020 ◽  
Author(s):  
Pinglang Ruan ◽  
Dan Liu ◽  
Lili Wang ◽  
Ling Qin ◽  
Yurong Tan

Abstract Background: Thymic epithelial tumors (TETs) are uncommon neoplasms with poor prognosis and limited effective therapeutic options. This study aims to investigate the prognosis of tumor mutation burden (TMB) and the potential association with immune infiltrates in TETs. Methods: Tumor mutation burden (TMB) was calculated using Maftools package and the samples were classified into high-TMB and low- TMB groups. Differentially expressed genes (DEGs) combined with immune cell infiltration and survival rate were analyzed between the low-TMB and high-TMB groups.Results: Single nucleotide polymorphism (SNP) occurred more frequently than insertion or deletion, and C>T was the most common single nucleotide variants (SNV) in TETs. The results of Kaplan–Meier curve indicated that a high TMB was associated with worse clinical outcomes of TETs. Moreover, 3 hub immune genes associated with immune infiltration were significantly associated with prognosis. Besides, the TMB-related signature (TMBRS) model based on the three hub immune genes possessed good predictive value with area under curve (AUC) 0.729, and patients with higher TMBRS scores showed worse TETs outcomes. In addition, infiltration levels of native CD4+ T cell, activated memory CD4+ T cell and follicular helper T cells in low-TMB group were higher than those in high-TMB group, which were correlated positively with prognosis of TETs. Conclusion: TETs patients with low TMB have better prognosis than those with high TMB, and TMB might affect the development of TETs by regulating immune infiltration.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 592-592
Author(s):  
Roberto Antonio Leon-Ferre ◽  
Kaitlyn McGrath ◽  
Vera J. Suman ◽  
Jodi M Carter ◽  
Krishna R. Kalari ◽  
...  

592 Background: Immune responses in the tumor microenvironment have prognostic and predictive value in BC. However, the potential of immune responses observed in peripheral blood as biomarkers in BC remains unclear. We have shown that a higher frequency of circulating monocytes and a lower frequency of antigen-experienced memory CD8+ T cells are associated with response to NAC in triple negative BC (Leon-Ferre et al SABCS 2019). Here, we used cytometry by time-of-flight (CyTOF) to evaluate associations between circulating immune cells, clinical features and response to T-based NAC in HER2+ BC. Methods: PBMC suspensions from 36 pts with stage I-III HER2+ BC were prospectively collected prior to initiation of T-based NAC, stained with 29 metal-tagged antibodies optimized to identify major human immune cell subsets, and acquired in the Helios CyTOF instrument. Differential abundance analysis of immune cells by clinical characteristics and by NAC response was evaluated using Wilcoxon rank sum test. % of immune cell subsets is presented as % of all PBMCs. Results: Most pts presented with ER- tumors (56%), measuring > 5cm (64%) and with nodal metastases (78%). After NAC, 16 pts (44%) achieved pathologic complete response (pCR). Analysis of preNAC PBMCs demonstrated a significantly higher number of B cells (8% vs 5%, p = 0.05) and effector memory CD8+ T cells (CD45RA-/CCR7-, 3 vs 1%, p = 0.02) in pts with pCR compared to those with residual disease. Of the B cell subsets, naïve B cells (CD24-/CD27-) were higher in pts who achieved pCR vs not (7% vs 4%, 0 = 0.04). Regarding clinical characteristics, cN+ pts at presentation exhibited a lower number of peripheral blood T cells compared to cN- pts (47% vs 63%, p = 0.03). Of the T cell subsets, overall CD4+ and naïve CD4+ T cells (CD45RA+/CCR7+) were lower in cN+ vs cN- pts (31% vs 45%, p = 0.05; and 11% vs 24%, p = 0.04). We also observed differences in CD56+/CD16- NK cells by ER status (ER- 1% vs ER+ 3%, p = 0.01), and a moderate negative correlation between age and % circulating CD8+ T cells (rho -0.4669, p = 0.004). Conclusions: Distinct peripheral blood immune cell profiles are observed in HER2+ BC at diagnosis, and are associated with response to T-based NAC and initial clinical characteristics. Notably, pts who later achieved pCR had a relative abundance of B cells and effector memory CD8+ T cells at diagnosis. These data suggest that immune cell phenotyping in peripheral blood may have potential as a biomarker to predict response to NAC in BC.


2020 ◽  
Author(s):  
Renshen Xiang ◽  
Tao Fu

Abstract Background: Few studies have focused on the underlying relationship between the prognosis of tumor mutation burden (TMB) and immune cell infiltration in gastric cancer (GC). This study aims to explore the relationship among TMB and various components in tumor microenvironment (TME). Methods: The transcription profiles and somatic mutation data of 375 tumor and 32 normal samples were obtained from TCGA. The specific mutation information was summarized and visualized with waterfall chart, then number of TMB per million bases of each GC sample was calculated. Immune/stromal scores and tumor purity were calculated by the ‘ESTIMATE’ package, and the fractions of 22 immune cells in each sample were evaluated by CIBERSORT algorithm. Finally, Lass regression analysis was utilized to generate a prognostic scoring signature with TCGA cohort as the training set, while GES84437 cohort as the validation set. Results: Higher TMB indicated favorable overall survival (OS, P = 0.043),better disease specific survival (P = 0.029), and longer progression free interval (P = 0.004). TMB was positively correlated with MSI and tumor purity, while negatively associated with immune/stromal scores. Moreover, TMBhigh group has lower T cells CD4 memory resting (P < 0.001) and T cells regulatory (P < 0.001), and more T cells CD4 memory activated (P < 0.001) and T cells follicular helper (P = 0.009). More importanly, the infiltration of dendritic cells activated predicted a worse OS, while T cells CD4 memory activated and T cells follicular helper meant a better OS. Finally, a nomogram combined TMB-related signature with clinicopathologic variables can successfully predict the OS with high accuracy and efficiency.Conclusion: TMB can effectively reveal the immune infiltration status in TME of GC, and might serve as a prognostic classifier for individualized treatment of clinical decision-making.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengyu Sun ◽  
Meng Xie ◽  
Tongyue Zhang ◽  
Yijun Wang ◽  
Wenjie Huang ◽  
...  

Recent studies have shown that RNA N6-methyladenosine (m6A) modification plays an important part in tumorigenesis and immune-related biological processes. However, the comprehensive landscape of immune cell infiltration characteristics in the tumor microenvironment (TME) mediated by m6A methylation modification in pancreatic cancer has not yet been elucidated. Based on consensus clustering algorithm, we identified two m6A modification subtypes and then determined two m6A-related gene subtypes among 434 pancreatic cancer samples. The TME characteristics of the identified gene subtypes were highly consistent with the immune-hot phenotype and the immune-cold phenotype respectively. According to the m6A score extracted from the m6A-related signature genes, patients can be divided into high and low m6A score groups. The low score group displayed a better prognosis and relatively strong immune infiltration. Further analysis showed that low m6A score correlated with lower tumor mutation burden and PD-L1 expression, and indicated a better response to immunotherapy. In general, m6A methylation modification is closely related to the diversity and complexity of immune infiltration in TME. Evaluating the m6A modification pattern and immune infiltration characteristics of individual tumors can help deepen our understanding of the tumor microenvironment landscape and promote a more effective clinical practice of immunotherapy.


Author(s):  
Yaling Shi ◽  
Mingkai Tan ◽  
Xing Chen ◽  
Yanxia Liu ◽  
Jide Huang ◽  
...  

SummaryCoronavirus disease 2019 (COVID-19) is a respiratory disorder caused by the highly contagious SARS-CoV-2. The immunopathological characteristics of COVID-19 patients, either systemic or local, have not been thoroughly studied. In the present study, we analyzed both the changes in the cellularity of various immune cell types as well as cytokines important for immune reactions and inflammation. Our data indicate that patients with severe COVID-19 exhibited an overall decline of lymphocytes including CD4+ and CD8+ T cells, B cells, and NK cells. The number of immunosuppressive regulatory T cells was moderately increased in patients with mild COVID-19. IL-2, IL-6, and IL-10 were remarkably up-regulated in patients with severe COVID-19. The levels of IL-2 and IL-6 relative to the length of hospital stay underwent a similar “rise-decline”pattern, probably reflecting the therapeutic effect. In conclusion, our study shows that the comprehensive decrease of lymphocytes, and the elevation of IL-2 and IL-6 are reliable indicators of severe COVID-19.


Sign in / Sign up

Export Citation Format

Share Document