Area and Positional Accuracy of DMSP Nighttime Lights Data

Author(s):  
Christopher Elvidge ◽  
Jeffrey Safran ◽  
Ingrid Nelson ◽  
Benjamin Tuttle ◽  
Vinita Ruth Hobson ◽  
...  
Author(s):  
Hang-Nga Mai ◽  
Du-Hyeong Lee

This study evaluated the effects of different matching methods on the accuracy of dentofacial integration in stereophotogrammetry and smartphone face-scanning systems. The integration was done (N = 30) with different matching areas (n = 10), including teeth image only (TO), perioral area without markers (PN) and with markers (PM). The positional accuracy of the integrated models was assessed by measuring the midline linear deviations and incisal line canting between the experimental groups and laser scanner-based reference standards. Kruskal–Wallis and Mann–Whitney U tests were used for statistical analyses (α = 0.05). The PM method exhibited the smallest linear deviations in both systems; while the highest deviations were found in the TO in stereophotogrammetry; and in PN in smartphone. For the incisal line canting; the canting degree was the lowest in the PM method; followed by that in the TO and the PN in both systems. Although stereophotogrammetry generally exhibited higher accuracy than the smartphone; the two systems demonstrated no significant difference when the perioral areas were used for matching. The use of perioral scans with markers enables accurate dentofacial image integration; however; cautions should be given on the accuracy of the perioral image obtained without the use of markers.


2021 ◽  
Vol 13 (12) ◽  
pp. 6981
Author(s):  
Marcela Bindzarova Gergelova ◽  
Slavomir Labant ◽  
Jozef Mizak ◽  
Pavel Sustek ◽  
Lubomir Leicher

The concept of further sustainable development in the area of administration of the register of old mining works and recent mining works in Slovakia requires precise determination of the locations of the objects that constitute it. The objects in this register have their uniqueness linked with the history of mining in Slovakia. The state of positional accuracy in the registration of objects in its current form is unsatisfactory. Different database sources containing the locations of the old mining works are insufficient and show significant locational deviations. For this reason, it is necessary to precisely locate old mining works using modern measuring technologies. The most effective approach to solving this problem is the use of LiDAR data, which at the same time allow determining the position and above-ground shape of old mining works. Two localities with significant mining history were selected for this case study. Positional deviations in the location of old mining works among the selected data were determined from the register of old mining works in Slovakia, global navigation satellite system (GNSS) measurements, multidirectional hill-shading using LiDAR, and accessible data from the open street map. To compare the positions of identical old mining works from the selected database sources, we established differences in the coordinates (ΔX, ΔY) and calculated the positional deviations of the same objects. The average positional deviation in the total count of nineteen objects comparing documents, LiDAR data, and the register was 33.6 m. Comparing the locations of twelve old mining works between the LiDAR data and the open street map, the average positional deviation was 16.3 m. Between the data sources from GNSS and the registry of old mining works, the average positional deviation of four selected objects was 39.17 m.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


1998 ◽  
Vol 11 (1) ◽  
pp. 551-551
Author(s):  
N. Zacharias ◽  
M.I. Zacharias ◽  
C. de Vegt ◽  
C.A. Murray

The Second Cape Photographic Catalog (CPC2) contains 276,131 stars covering the entire Southern Hemisphere in a 4-fold overlap pattern. Its mean epoch is 1968, which makes it a key catalog for proper motions. A new reduction of the 5687 plates using on average 40 Hipparcos stars per plate has resulted in a vastly improved catalog with a positional accuracy of about 40 mas (median value) per coordinate, which comes very close to the measuring precision. In particular, for the first time systematic errors depending on magnitude and color can be solved unambiguously and have been removed from the catalog. In combination with the Tycho Catalogue (mean epoch 1991.25) and the upcoming U.S. Naval Observatory CCD Astrograph Catalog (UCAC) project proper motions better than 2 mas/yr can be obtained. This will lead to a vastly improved reference star catalog in the Southern Hemisphere for the final Astrographic Catalogue (AC) reductions, which will then provide propermotions for millions of stars when combined with new epoch data. These data then will allow an uncompromised reduction of the southern Schmidt surveys on the International Celestial Reference System (ICRS).


2021 ◽  
Vol 13 (14) ◽  
pp. 2741
Author(s):  
John Gibson ◽  
Geua Boe-Gibson

Nighttime lights (NTL) are a popular type of data for evaluating economic performance of regions and economic impacts of various shocks and interventions. Several validation studies use traditional statistics on economic activity like national or regional gross domestic product (GDP) as a benchmark to evaluate the usefulness of NTL data. Many of these studies rely on dated and imprecise Defense Meteorological Satellite Program (DMSP) data and use aggregated units such as nation-states or the first sub-national level. However, applied researchers who draw support from validation studies to justify their use of NTL data as a proxy for economic activity increasingly focus on smaller and lower level spatial units. This study uses a 2001–19 time-series of GDP for over 3100 U.S. counties as a benchmark to examine the performance of the recently released version 2 VIIRS nighttime lights (V.2 VNL) products as proxies for local economic activity. Contrasts were made between cross-sectional predictions for GDP differences between areas and time-series predictions of GDP changes within areas. Disaggregated GDP data for various industries were used to examine the types of economic activity best proxied by NTL data. Comparisons were also made with the predictive performance of earlier NTL data products and at different levels of spatial aggregation.


Author(s):  
Jing Bai ◽  
Le Fan ◽  
Shuyang Zhang ◽  
Zengcui Wang ◽  
Xiansheng Qin

Purpose Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by developing a more practical parameter identification model. Design/methodology/approach The model is developed by considering both geometric parameters and joint stiffness; geometric parameters contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and adds six parameters. The model is formulated as the form of error via linearization. Findings The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case, and the volatility is also reduced. Originality/value A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for calibration and further application.


Sign in / Sign up

Export Citation Format

Share Document