Food Search and Swimming Speed in Daphnia

2021 ◽  
pp. 375-387
Author(s):  
Petter Larsson ◽  
Ole T. Kleiven
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debo Qi ◽  
Chengchun Zhang ◽  
Jingwei He ◽  
Yongli Yue ◽  
Jing Wang ◽  
...  

AbstractThe fast swimming speed, flexible cornering, and high propulsion efficiency of diving beetles are primarily achieved by their two powerful hind legs. Unlike other aquatic organisms, such as turtle, jellyfish, fish and frog et al., the diving beetle could complete retreating motion without turning around, and the turning radius is small for this kind of propulsion mode. However, most bionic vehicles have not contained these advantages, the study about this propulsion method is useful for the design of bionic robots. In this paper, the swimming videos of the diving beetle, including forwarding, turning and retreating, were captured by two synchronized high-speed cameras, and were analyzed via SIMI Motion. The analysis results revealed that the swimming speed initially increased quickly to a maximum at 60% of the power stroke, and then decreased. During the power stroke, the diving beetle stretched its tibias and tarsi, the bristles on both sides of which were shaped like paddles, to maximize the cross-sectional areas against the water to achieve the maximum thrust. During the recovery stroke, the diving beetle rotated its tarsi and folded the bristles to minimize the cross-sectional areas to reduce the drag force. For one turning motion (turn right about 90 degrees), it takes only one motion cycle for the diving beetle to complete it. During the retreating motion, the average acceleration was close to 9.8 m/s2 in the first 25 ms. Finally, based on the diving beetle's hind-leg movement pattern, a kinematic model was constructed, and according to this model and the motion data of the joint angles, the motion trajectories of the hind legs were obtained by using MATLAB. Since the advantages of this propulsion method, it may become a new bionic propulsion method, and the motion data and kinematic model of the hind legs will be helpful in the design of bionic underwater unmanned vehicles.


1960 ◽  
Vol 9 (2) ◽  
pp. 305-317 ◽  
Author(s):  
M. J. Lighthill

The paper seeks to determine what transverse oscillatory movements a slender fish can make which will give it a high Froude propulsive efficiency, $\frac{\hbox{(forward velocity)} \times \hbox{(thrust available to overcome frictional drag)}} {\hbox {(work done to produce both thrust and vortex wake)}}.$ The recommended procedure is for the fish to pass a wave down its body at a speed of around $\frac {5} {4}$ of the desired swimming speed, the amplitude increasing from zero over the front portion to a maximum at the tail, whose span should exceed a certain critical value, and the waveform including both a positive and a negative phase so that angular recoil is minimized. The Appendix gives a review of slender-body theory for deformable bodies.


1989 ◽  
Vol 46 (3) ◽  
pp. 384-388 ◽  
Author(s):  
F. W. H. Beamish ◽  
J. C. Howlett ◽  
T. E. Medland

Juvenile lake trout, Salvelinus namaycush, of similar size were fed one of three isocaloric diets, each differing in protein and lipid content. Oxygen consumption and swimming performance were measured in a recirculating water flume at intervals throughout the 70-d feeding trials (10 °C). Swimming speed was increased by stepwise velocity increments (5 cm∙s−1) and oxygen consumption was measured at each velocity between 20 and 45 cm∙s−1. Oxygen consumption for a given speed did not differ significantly throughout the feeding trial nor among the diets implying a similarity in the quality and quantity of substrate catabolized for energy. Basal metabolism (0 cm∙s−1) was also independent of diet and feeding interval. Critical swimming speed increased with dietary and carcass protein content to suggest a direct association with muscle mass and number of myofilaments.


2015 ◽  
Vol 73 (4) ◽  
pp. 1127-1137 ◽  
Author(s):  
Leif Nøttestad ◽  
Justine Diaz ◽  
Hector Penã ◽  
Henrik Søiland ◽  
Geir Huse ◽  
...  

Abstract High abundance of Northeast Atlantic mackerel (Scomber scombrus L.), combined with limited food resources, may now force mackerel to enter new and productive regions in the northern Norwegian Sea. However, it is not known how mackerel exploit the spatially varying feeding resources, and their vertical distribution and swimming behaviour are also largely unknown. During an ecosystem survey in the Norwegian Sea during the summer feeding season, swimming direction, and speed of mackerel schools were recorded with high-frequency omnidirectional sonar in four different regions relative to currents, ambient temperature, and zooplankton. A total of 251 schools were tracked, and fish and zooplankton were sampled with pelagic trawl and WP-2 plankton net. Except for the southwest region, swimming direction of the tracked schools coincided with the prevailing northerly Atlantic current direction in the Norwegian Sea. Swimming with the current saves energy, and the current also provides a directional cue towards the most productive areas in the northern Norwegian Sea. Average mean swimming speed in all regions combined was ∼3.8 body lengths s−1. However, fish did not swim in a straight course, but often changed direction, suggesting active feeding in the near field. Fish were largest and swimming speed lowest in the northwest region which had the highest plankton concentrations and lowest temperature. Mackerel swam close to the surface at a depth of 8–39 m, with all schools staying above the thermocline in waters of at least 6°C. In surface waters, mackerel encounter improved foraging rate and swimming performance. Going with the flow until temperature is too low, based on an expectation of increasing foraging rate towards the north while utilizing available prey under way, could be a simple and robust feeding strategy for mackerel in the Norwegian Sea.


1993 ◽  
Vol 178 (1) ◽  
pp. 97-108 ◽  
Author(s):  
P. W. Webb

Kinematics and steady swimming performance were recorded for steelhead trout (approximately 12.2 cm in total length) swimming in channels 4.5, 3 and 1.6 cm wide in the centre of a flume 15 cm wide. Channel walls were solid or porous. Tail-beat depth and the length of the propulsive wave were not affected by spacing of either solid or porous walls. The product of tail-beat frequency, F, and amplitude, H, was related to swimming speed, u, and to harmonic mean distance of the tail from the wall, z. For solid walls: FH = 1.01(+/−0.31)u0.67(+/−0.09)z(0.12+/−0.02) and for grid walls: FH = 0.873(+/−0.302)u0.74(+/−0.08)z0.064(+/−0.024), where +/−2 s.e. are shown for regression coefficients. Thus, rates of working were smaller for fish swimming between solid walls, but the reduction due to wall effects decreased with increasing swimming speed. Porous grid walls had less effect on kinematics, except at low swimming speeds. Spacing of solid walls did not affect maximum tail-beat frequency, but maximum tail-beat amplitude decreased with smaller wall widths. Maximum tail-beat amplitude similarly decreased with spacing between grid walls, but maximum tail-beat frequency increased. Walls also reduced maximum swimming speed. Wall effects have not been adequately taken into account in most studies of fish swimming in flumes and fish wheels.


1986 ◽  
Vol 122 (1) ◽  
pp. 1-12 ◽  
Author(s):  
KARIN VON SECKENDORFF HOFF ◽  
RICHARD JOEL WASSERSUG

The kinematics of swimming in larval Xenopus laevis has been studied using computer-assisted analysis of high-speed (200 frames s−1) ciné records. The major findings are as follows. 1. At speeds below 6 body lengths (L) per second, tail beat frequency is approximately 10 Hz and, unlike for most aquatic vertebrates, is not correlated with specific swimming speed. At higher speeds, tail beat frequency and speed are positively correlated. 2. Xenopus tadpoles show an increase in the maximum amplitude of the tail beat with increasing velocity up to approximately 6Ls−1. Above that speed amplitude approaches an asymptote at 20 % of body length. 3. Anterior yaw is absent at velocities below 6Ls−1, unlike for other anuran larvae, but is present at higher speeds. 4. At speeds below 6Ls−1 there is a positive linear relationship between length of the propulsive wave (λ) and specific swimming speed. At higher speeds wavelength is constant at approximately 0.8L. 5. There is a shift in the modulation of wavelength and tail beat frequency with swimming speed around 5.6Ls−1, suggesting two different swimming modes. The slower mode is used during open water cruising and suspension feeding. The faster, sprinting mode may be used to avoid predators. 6. Froude efficiencies are similar to those reported for fishes and other anuran larvae. 7. Unlike Rana and Bufo larvae, the axial muscle mass of Xenopus increases dramatically with size from less than 10% of total mass for the smallest animals to more than 45% of total mass for the largest animals. This increase is consistent with maintaining high locomotor performance throughout development.


2013 ◽  
Vol 19 (4) ◽  
pp. 724-729 ◽  
Author(s):  
Marcos Franken ◽  
Fernando Diefenthaeler ◽  
Felipe Collares Moré ◽  
Ricardo Peterson Silveira ◽  
Flávio Antônio de Souza Castro

The purpose of this study was to investigate the critical stroke rate (CSR) compared to the average stroke rate (SR) when swimming at the critical speed (CS). Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105%) in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL) at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.


Sign in / Sign up

Export Citation Format

Share Document