High resolution TEM study of Al–Si 1%/Si interface

Author(s):  
C D’Anterroches
Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
P.M. Mul ◽  
B.J.M. Bormans ◽  
L. Schaap

The first Field Emission Guns (FEG) on TEM/STEM instruments were introduced by Philips in 1977. In the past decade these EM400-series microscopes have been very successful, especially in analytical electron microscopy, where the high currents in small probes are particularly suitable. In High Resolution Electron Holography, the high coherence of the FEG has made it possible to approach atomic resolution.Most of these TEM/STEM systems are based on a cold field emitter (CFE). There are, however, a number of disadvantages to CFE’s, because of their very small emission region: the maximum current is limited (a strong disadvantage for high-resolution TEM imaging) and the emission is unstable, requiring special measures to reduce the strong FEG-induced noise. Thermal field emitters (TFE), i.e. a zirconiated field emitter source operating in the thermal or Schottky mode, have been shown to be a viable and attractive alternative to CFE’s. TFE’s have larger emission regions, providing much higher maximum currents, better stability, and reduced sensitivity to vacuum conditions as well as mechanical and electrical interferences.


Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


2003 ◽  
Vol 762 ◽  
Author(s):  
Hwang Huh ◽  
Jung H. Shin

AbstractAmorphous silicon (a-Si) films prepared on oxidized silicon wafer were crystallized to a highly textured form using contact printing of rolled and annealed nickel tapes. Crystallization was achieved by first annealing the a-Si film in contact with patterned Ni tape at 600°C for 20 min in a flowing forming gas (90 % N2, 10 % H2) environment, then removing the Ni tape and further annealing the a-Si film in vacuum for2hrsat600°C. An array of crystalline regions with diameters of up to 20 μm could be formed. Electron microscopy indicates that the regions are essentially single-crystalline except for the presence of twins and/or type A-B formations, and that all regions have the same orientation in all 3 directions even when separated by more than hundreds of microns. High resolution TEM analysis shows that formation of such orientation-controlled, nearly single crystalline regions is due to formation of nearly single crystalline NiSi2 under the point of contact, which then acts as the template for silicide-induced lateral crystallization. Furthermore, the orientation relationship between Si grains and Ni tape is observed to be Si (110) || Ni (001)


2019 ◽  
Author(s):  
Satoshi Uchida ◽  
Tae-Woong Kim ◽  
Ludmila Cojocaru ◽  
Tomonori Matsushita ◽  
Takashi Kondo ◽  
...  

Author(s):  
Satoshi Uchida ◽  
Tae Woong Kim ◽  
Ludmila Cojocaru ◽  
Takashi Kondo ◽  
Hiroshi Segawa

2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Yu-Hao Deng

High-resolution TEM (HRTEM) is a powerful tool for structure characterization. However, methylammonium lead iodide (MAPbI3) perovskite is highly sensitive to electron beams and easily decomposes into lead iodide (PbI2). Misidentifications, such as PbI2 being incorrectly labeled as perovskite, are widely present in HRTEM characterization and would negatively affect the development of perovskite research field. Here misidentifications in MAPbI3 perovskite are summarized, classified, and corrected based on low-dose imaging and electron diffraction (ED) simulations. Corresponding crystallographic parameters of intrinsic tetragonal MAPbI3 and the confusable hexagonal PbI2 are presented unambiguously. Finally, the method of proper phase identification and some strategies to control the radiation damage in HRTEM are provided. This warning paves the way to avoid future misinterpretations in HRTEM characterization of perovskite and other electron beam-sensitive materials.


2004 ◽  
Vol 70 (12) ◽  
Author(s):  
Fumiyasu Oba ◽  
Hiromichi Ohta ◽  
Yukio Sato ◽  
Hideo Hosono ◽  
Takahisa Yamamoto ◽  
...  

1987 ◽  
Vol 99 ◽  
Author(s):  
P. C Gibbons ◽  
K. F. Kelton ◽  
Z.-Y. Li ◽  
L. Mantese ◽  
L. Sobotka

ABSTRACTHigh-resolution TEM images of well-characterized YBa2Cu3O7-δ prove that atomic disorder in the {110} twin boundaries is confined to within 20 A of the boundaries, and suggest that there is disorder within those regions.


2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
F Hue ◽  
C L Johnson ◽  
S Lartigue-Korinek ◽  
G Wang ◽  
P R Buseck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document