Sizing up the Situation: A Three-dimensional Human Figure Modeling Framework for Military Systems Design

2018 ◽  
pp. 369-403
Author(s):  
Richard W. Kozycki
Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 906
Author(s):  
Ivan Bašták Ďurán ◽  
Martin Köhler ◽  
Astrid Eichhorn-Müller ◽  
Vera Maurer ◽  
Juerg Schmidli ◽  
...  

The single-column mode (SCM) of the ICON (ICOsahedral Nonhydrostatic) modeling framework is presented. The primary purpose of the ICON SCM is to use it as a tool for research, model evaluation and development. Thanks to the simplified geometry of the ICON SCM, various aspects of the ICON model, in particular the model physics, can be studied in a well-controlled environment. Additionally, the ICON SCM has a reduced computational cost and a low data storage demand. The ICON SCM can be utilized for idealized cases—several well-established cases are already included—or for semi-realistic cases based on analyses or model forecasts. As the case setup is defined by a single NetCDF file, new cases can be prepared easily by the modification of this file. We demonstrate the usage of the ICON SCM for different idealized cases such as shallow convection, stratocumulus clouds, and radiative transfer. Additionally, the ICON SCM is tested for a semi-realistic case together with an equivalent three-dimensional setup and the large eddy simulation mode of ICON. Such consistent comparisons across the hierarchy of ICON configurations are very helpful for model development. The ICON SCM will be implemented into the operational ICON model and will serve as an additional tool for advancing the development of the ICON model.


2013 ◽  
Vol 13 (24) ◽  
pp. 12549-12572 ◽  
Author(s):  
A. H. Berner ◽  
C. S. Bretherton ◽  
R. Wood ◽  
A. Muhlbauer

Abstract. A cloud-resolving model (CRM) coupled to a new intermediate-complexity bulk aerosol scheme is used to study aerosol–boundary-layer–cloud–precipitation interactions and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single lognormal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by clouds and rain. The CRM with the aerosol scheme is applied to a range of steadily forced cases idealized from a well-observed POC. The long-term system evolution is explored with extended two-dimensional (2-D) simulations of up to 20 days, mostly with diurnally averaged insolation and 24 km wide domains, and one 10 day three-dimensional (3-D) simulation. Both 2-D and 3-D simulations support the Baker–Charlson hypothesis of two distinct aerosol–cloud "regimes" (deep/high-aerosol/non-drizzling and shallow/low-aerosol/drizzling) that persist for days; transitions between these regimes, driven by either precipitation scavenging or aerosol entrainment from the free-troposphere (FT), occur on a timescale of ten hours. The system is analyzed using a two-dimensional phase plane with inversion height and boundary layer average aerosol concentrations as state variables; depending on the specified subsidence rate and availability of FT aerosol, these regimes are either stable equilibria or distinct legs of a slow limit cycle. The same steadily forced modeling framework is applied to the coupled development and evolution of a POC and the surrounding overcast boundary layer in a larger 192 km wide domain. An initial 50% aerosol reduction is applied to half of the model domain. This has little effect until the stratocumulus thickens enough to drizzle, at which time the low-aerosol portion transitions into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between the areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.


2019 ◽  
Vol 27 (3) ◽  
pp. 249-267
Author(s):  
JA Vazquez-Santacruz ◽  
J Torres-Figueroa ◽  
R de J Portillo-Velez

In this article, a formal mechatronic design of a biped robot is addressed. It is considered a model-based system engineering methodology since the continuous updating of information, from analysis and evolution of conceptual designs, demands a large volume of data. The definition of a biped robot comes from the need of a system to perform human-like walking as the problem to be solved. A specific robot configuration results from the analysis of conceptual solutions throughout SysML as the language for modeling the synergistic and automatic integration among engineering disciplines. The general design process is developed according to the well-known V-model for mechatronic systems design; however, a three-dimensional focus is proposed in order to address a variety of domains and their interaction along the design process. The detailed study of the solution is evaluated in order to optimize the joint torques and limbs shape from an anthropometric robot to achieve effective human-like motion. Although the mechatronic design is done for the overall biped robot system, this work is particularly focused on mechanical features as the most representative subsystem that incorporates genetic algorithm optimization based on a numerical Newton–Euler model merged with topology optimization tools to define final geometry of limbs with stiffness maximization.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Markos Antonopoulos ◽  
Dimitra Dionysiou ◽  
Georgios Stamatakos ◽  
Nikolaos Uzunoglu

Following publication of the original article [1], the authors noticed that the following errors were introduced by pdf/html formatting issues.


2020 ◽  
Author(s):  
Fabian Hoffmann

<p>While the use of Lagrangian cloud microphysical models dates back as far as the 1950s, the integration of this framework into fully-coupled, three-dimensional dynamical models is only possible for about 10 years. In addition to the highly accurate and detailed representation of cloud microphysical processes, these so-called Lagrangian Cloud Models (LCMs) also allow for new ways of representing subgrid-scale dynamical processes and their effects on the microphysical development of clouds, typically neglected or only crudely parameterized due to computational constraints.</p><p>In this talk, I will present a new approach in which supersaturation fluctuations on the subgrid-scale of a large-eddy simulation (LES) model are represented by an economical, one-dimensional model that represents turbulent compression and folding. With a resolution comparable to direct numerical simulation (DNS), inhomogeneous and finite rate mixing processes are explicitly resolved. Applications of this modeling approach for warm-phase shallow cumuli and stratocumuli, and first applications for mixed-phase clouds will be discussed. Generally, clouds susceptible to inhomogeneous mixing show a reduction in the droplet number concentration and stronger droplet growth, in agreement with theory. Stratocumulus entrainment rates tend to be lower using the new approach compared to simulations without it, indicating a more appropriate representation of the entrainment-mixing process. Finally, the Wegner-Bergeron-Findeisen-Process, leading to a rapid ice formation in mixed-phase clouds, is decelerated.</p><p>All in all, this new modeling framework is capable of bridging the gap between LES and DNS, i.e., it enables representing all scales relevant to cloud physics, from entire cloud fields to the smallest turbulent fluctuations, in a single model, allowing to study their interactions explicitly and granting new insights.</p>


2013 ◽  
Vol 141 (2) ◽  
pp. 582-601 ◽  
Author(s):  
Nick Guy ◽  
Xiping Zeng ◽  
Steven A. Rutledge ◽  
Wei-Kuo Tao

Abstract Two mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. This study was undertaken to determine the performance of the cloud-resolving model in representing distinct convective and microphysical differences between the two MCSs over a tropical continental location. Simulations are performed using 1-km horizontal grid spacing, a lower limit on current embedded cloud-resolving models within a global multiscale modeling framework. Simulated system convective structure and microphysics are compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Vertical distributions of ice hydrometeors indicate underestimation at the mid- and upper levels, partially due to the inability of the model to produce adequate system heights. The abundance of high-reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles show that high reflectivity is present at greater heights than the simulations produced, thought to be a result of using a single-moment microphysics scheme. Relative trends in the population of simulated hydrometeors are in agreement with observations, though a secondary convective burst is not well represented. Despite these biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model has some skill in capturing observed differences between the two MCSs.


Author(s):  
Deepika Deepika ◽  
Ompal Singh ◽  
Adarsh Anand ◽  
Jagvinder Singh

Today, so as to meet the user's requirement, modification of software is necessarily required. But at the same time, to incorporate these modifications and requirements there are enormous changes which are made to the coding of the software and over a period of time these changes make the software complex. Largely there are three types of code changes occur in the source code namely, bug repair, feature enhancement & addition of new features, but these changes bring the uncertainty in the bug removal rate. In this paper, these uncertainties have been explicitly modeled and using three-dimensional wiener processes that define the three types of fluctuation; we have come up with an entropy prediction modeling framework with a unified approach. The analytical solution of the equation is interpreted using Itô’s process. The models are fitted on three real life projects namely Avro, Hive and Pig of Apache open source software (OSS) The experimental findings show that present models exhibit accurate estimation results and have strong prediction skills.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Hossein Mokhtarian ◽  
Eric Coatanéa ◽  
Henri Paris ◽  
Mouhamadou Mansour Mbow ◽  
Franck Pourroy ◽  
...  

Modeling and simulation for additive manufacturing (AM) is commonly used in industry. Nevertheless, a central issue remaining is the integration of different models focusing on different objectives and targeting different levels of details. The objective of this work is to increase the prediction capability of characteristics and performances of additively manufactured parts and to co-design parts and processes. The paper contributes to this field of research by integrating part's performance model and additive technology process model into a single early integrated model. The paper uses the dimensional analysis conceptual modeling (DACM) framework in an AM perspective to generate causal graphs integrating the AM equipment and the part to be printed. DACM offers the possibility of integrating existing knowledge in the model. The framework supported by a computer tool produces a set of governing equations representing the relationships among the influencing variables of the integrated model. The systematic identification of the weaknesses and contradictions in the system and qualitative simulation of the system are some of the potential uses of the model. Ultimately, it is a way to create better designs of machines and parts, to control and qualify the manufacturing process, and to control three-dimensional (3D) printing processes. The DACM framework is tested on two cases of a 3D printer using the fused filament fabrication (FFF) powder bed fusion. The analysis, applied to the global system formed of the 3D printer and the part, illustrates the existence of contradictions. The analysis supports the early redesign of both parts and AM process (equipment) and later optimization of the control parameters.


Volume 3 ◽  
2004 ◽  
Author(s):  
Anand Vaz ◽  
Shinichi Hirai

Vector bond graphs have been systematically applied to the modeling of prosthesis for a partially impaired hand. The partial impairment considered covers a category of the hand that has lost one or more fingers but retains the ability of its remaining natural fingers. The fingers and their prosthetic extensions are considered as rigid links. Rotation matrices which specify orientation of finger links are obtained from respective angular velocities. String-tube mechanism used to actuate prosthetic joints is modeled with the connection to joint variables of the mechanism. The vector bond graph approach enables the modeling of three dimensional movement of the hand mechanism. An example of a two joint string-tube actuated prosthetic mechanism is presented to describe the construction of the vector bond graph model. Systematic derivation of dynamics from the vector bond graphs is shown. The approach based on vector bond graphs presented here is useful for simulations and control systems design of such biomechanical systems.


Sign in / Sign up

Export Citation Format

Share Document