Setting and early strength gain of cement containing fly ash, slag or limestone fillers CD . POMEROY British Cement Association, Wexham Springs, Slough, UK

1991 ◽  
pp. 121-131
Keyword(s):  
Fly Ash ◽  
Author(s):  
David J. Mukai ◽  
Simten Altan ◽  
John Q. Ehrgott

The researchers’ primary objective was to evaluate the early-strength characteristics of self-compacting concrete (SCC), which is a type of concrete that can be placed without external vibration, even in congested areas. Two unique characteristics of SCC are its high-percentage substitution of cement with fly ash or slag cement, or with both fly ash and slag cement and a relatively high superplasticizer dosage. Both of these characteristics retard early-strength gain. The impetus was to develop self-compacting concrete with an early strength suitable for precast applications. The major findings are that it is possible to proportion SCC mixtures with high early strength (30 MPa at 16 h under steam curing) and that high slump does not necessarily correlate with self-compaction.


2011 ◽  
Vol 194-196 ◽  
pp. 1085-1088
Author(s):  
Zhi Min He ◽  
Xiao Ju Shen ◽  
Jun Zhe Liu

The use of fly ashes for cement-replacement purposes, especially in high volumes, decreases rate of early strength development of the steam curing concrete. To resolve it, this paper developed a new steam-cured concrete incorporating fly ash and a chemical activator (gypsum). Experiments were conducted to investigate the mechanical properties at early and later ages of steam and standard curing concretes. The corresponding mechanism was also discussed by testing the microstructure of concretes. Results indicate that the demoulding compressive strength of steam curing concrete with 4% gypsum dosage can meet production requirements, and compressive strength of this concrete at later ages increase well. Compared with that of ordinary pure cement steam-cured concrete, concrete with 4% gypsum has a higher compressive strength gain rate. At an early age, addition of the gypsum can distinctly accelerate the extent of hydration of the steam curing fly ash cement systems, and thus the microstructure of concrete becomes denser. However, in standard curing condtion, the effect of gypsum is not distinct.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
V. M. Sounthararajan ◽  
A. Sivakumar

The present research study focused on the high early strength concrete properties that can be produced with large replacement of cement by fly ash. Also, the effects of adding fibres on the compressive strength gain and early age strength gain properties are determined. Tests were conducted on different high strength concrete specimens, where fly ash was substituted for cement up to 50%. Different types of concrete specimens were casted and tested for different fine-to-coarse aggregate ratio, metallic fibre content, cement-to-total-aggregate ratio, and accelerator dosage. The test results indicated that high early strength concrete (50.7 MPa at 7 days) was obtained for higher F/C ratio of 0.8, C/TA ratio of 0.24, and higher dosage level of steel fibre at 1.5%.


2013 ◽  
Vol 641-642 ◽  
pp. 574-577 ◽  
Author(s):  
Ying Tao Li ◽  
Ling Zhou ◽  
Mao Jiang ◽  
Yu Zhang ◽  
Jun Shao

In this paper, the mechanical property experiments of concrete based on the seawater and sea sand have been carried in different raw materials preparation and different conservation environments. The results show that the early strength and late strength of concrete based on seawater and sea sand are better than concrete based on freshwater and sand. There is no significant strength decreased for concrete based on seawater and sea sand under accelerated alternating wet and dry conditions. For concrete based on seawater and sea sand mixed with admixture, the downward trend of late strength is significantly delayed, the late strength of concrete based on the seawater and sea sand mixed with slag gets the most obvious growth trend, while the late strength of seawater and sea sand concrete mixed with fly ash gets the largest increment.


1994 ◽  
Vol 24 (2) ◽  
pp. 277-284 ◽  
Author(s):  
K. Ganesh Babu ◽  
G. Siva Nageswara Rao
Keyword(s):  
Fly Ash ◽  

Author(s):  
Kotaro Kawamura ◽  
Joe Takemura ◽  
Shigenobu Iguchi ◽  
Tsutomu Yoshida ◽  
Masashi Kobayashi

<p>We are carrying out a construction project of new railroad viaducts. These new railroad viaducts are constructing using about 110,000 m<span>3</span> volume concrete. In this construction place, it is difficult for us to get low ASR-reactive aggregates and it is expected to be supplied with snowmelt water on the viaducts in winter. Then we tested ASR-reactive these local aggregates and found an effective mixed ratio of fly-ash is 20% of cement. On the other hand, various side effects were also expected by using fly-ash. For example, initial cracking due to contraction, early strength concrete, bleeding, etc. Therefore, we repeated various tests and examined and carried out a method that could ensure the same construction method and quality as when using ordinary Portland cement, even with fly-ash. Also, we adopted a structure that is unlikely to be affected by rainwater as a structural measure. For example, the entire adoption of a ramen type viaduct that has eliminated bearings, adoption of FRP sound barrier, etc. Then we made it possible to build highly durable railway viaducts by these various measures of materials and structures.</p>


2019 ◽  
Vol 28 (50) ◽  
pp. 44-61 ◽  
Author(s):  
Jijo James

The investigation evaluated the strength benefits obtained by amending cement stabilization of an expansive soil by using saw dust ash (SDA), a waste generated in wood milling industries due to burning. The experimental program involved the preparation of cylindrical specimens of size 38 mm x 76mm for evaluating the unconfined compression strength (UCS) of the cement stabilized and amended samples cured for varying periods of 2 hours, 7, 14 and 28 days. Two cement contents of 2% and 6% by weight of soil were adopted to stabilize the soil. The SDA amended cement stabilized samples adopted SDA contents of 5%, 10% and 20% by weight of soil. Strength gain trends for the amended samples were also fitted based on the results of the UCS tests. In order to analyse benefits in pavement design and thickness reduction, the UCS values were used to predict the CBR value of the specimens based on which the reduction in pavement thickness was calculated for different traffic densities. The investigation revealed that 5% SDA amendment of cement stabilization can result in up to 26% increase in early strength and 20% increase in delayed strength. Based on the predicted CBR values, pavement thickness can be reduced up to 8.3%.


2018 ◽  
Vol 1150 ◽  
pp. 73-90
Author(s):  
Vallarasu Manoharan Sounthararajan

Experimental investigations on the early age, strength gain properties of fly ash blended cement concretes containing low and high volume fly ash replacement were studied. Concrete mixes were prepared with two different fly ash contents and varying concrete ingredients with water to binder ratio (w/b), fine to coarse aggregate ratio (F/c) and accelerator dosage. Five different curing techniques, namely controlled humidity curing; hot air oven curing, steam curing, hot water curing and normal water curing were adopted for curing the fly ash based concretes. Test results showed evidence the influence of accelerating admixtures and accelerated curing for obtaining the high early strength properties in fly ash mixed concrete. Most notably a maximum 1 day compressive strength of 40.20 MPa and 34.60 MPa with low (25%) and high (50%) volume fly ash concretes were obtained respectively in this study. Experimental results clearly indicated that the improvements on the strength gain properties with the careful selection of mix ingredients; accelerator addition and accelerated curing in fly ash based concrete mixes. Also, significant improvements on the flexural strength, elastic modulus, dynamic modulus and the ultrasonic pulse velocity test were noticed.


2020 ◽  
pp. 002029402094713
Author(s):  
Ying Chen ◽  
Qianjia Hui ◽  
Hongwei Zhang ◽  
Zhijie Zhu ◽  
Cunwen Wang ◽  
...  

This paper presents a scientific basis and reference for the application of ceramsite concrete in underground coal mines. Taking fly-ash ceramsite as raw material, a variety of mix proportions of C20 ceramsite concrete were proposed by changing the sand rate of concrete. The results showed that: (1) fly-ash ceramsite has different water absorption performance with different particle sizes. The water absorption stopped after soaked for 48 h. So, the ceramsite should be soaked for more than 48 h to prevent the cement from hydrating insufficient which affects the mechanical properties of the concrete. (2) Seven mix proportions of C20 ceramsite concrete were designed by changing the ceramsite proportion. The ceramsite proportion of 43% was determined as optimal scheme whose 28-day strength was 29.60 MPa and elastic modulus was 12.45 GPa. (3) The optimal scheme was applied and verified in the field. The early strength of ceramsite concrete promotes quickly, 3-day strength was 16.8 MPa, and the 28-day strength was 29.9 MPa. Compared with ordinary pebble concrete, ceramsite concrete can provide faster, higher strength support to the roadway. Meanwhile, ceramsite concrete have properties of lightweight, and its application will bring economic and social benefits.


Sign in / Sign up

Export Citation Format

Share Document