Understanding Of Mechanical And Barrier Properties Of Starch, Polyvinyl Alcohol And Layered Silicate Nanocomposite Films Utilizing Mathematical Models

2014 ◽  
pp. 289-306
Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 298 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.


2021 ◽  
Author(s):  
Radhakrishnan E K ◽  
Ashitha Jose ◽  
A.S Saranya ◽  
Chinnu Chacko ◽  
Dhanya M Jacob

Abstract The post-harvest loss of fresh produces is a global challenge to the food industry. The drastic loss of fresh produces caused mainly by fungal attack demands the development of active packaging materials with antimicrobial properties. Hence studies have already reported the applications of polymers like Polyvinyl Alcohol (PVA) engineered with antimicrobial properties for the packaging. In the current study, material properties of PVA alone, PVA incorporated with chitosan nanoparticles (PCS), clove oil (PCO) and also chitosan nanoparticles and clove oil combination (PCSCO) have been studied for the packaging applications. All the developed films were characterised by the XRD and FTIR analysis and it confirmed the molecular interactions among the components of nanocomposites. At the same time, the bionanocomposite PCSCO was found to have low moisture content and film solubility as suitable for the packaging application. In addition, the presence of chitosan nanoparticles and clove oil was found to provide the microbial barrier properties to the PCS, PCO and PCSCO flms. The PCSCO film with both chitosan nanoparticles and clove oil was further demonstrated to have superior antifungal activity against the spoilage organism Pythium aphanidermatum. The results of the study indicate the potential of developed nanocomposite for the postharvest packaging application.


2003 ◽  
Vol 791 ◽  
Author(s):  
Ajit Ranade ◽  
Nandika D'Souza ◽  
Bruce Gnade ◽  
Christopher Thellen ◽  
Caitlin Orroth ◽  
...  

ABSTRACTPolyethylene terephthalate glycol (PETG) is a clear amorphous polymer, which is extensively used in flexible packaging. The dual packaging requirements of recyclability and long-term shelf life are often difficult to achieve. Meeting these needs become more urgent when considering food packaging for large volumes of soldiers positioned in different parts of the world. Our approach is to develop a high barrier PET packaging system via the Montmorillonite layered silicate (MLS) based nano technology. Prior research has indicated the significant impact of the polymer crystalline regions on the properties of the resultant nanocomposite. Therefore we must first investigate the amorphous PETG. We must also investigate the influence of increased matrix polarity on dispersion of the PETG by incorporating maleic anhydride (MA) onto the PETG backbone. The influence of the clay concentration and maleation are independently investigated. The glass transition of the as-processed and annealed samples are analyzed using Differential Scanning Calorimetry (DSC) while the thermal stability is determined using Thermogravimetric Analysis (TGA). Testing showed a slight depression in the glass transition temperature of PETG film when the MLS is introduced into the system. The nanocomposite films also demonstrated a lower thermal stability in relation to the neat PETG films. The barrier properties were determined on an in-house built calibration unit based on atomic mobility under high vacuum. X-ray diffraction and TEM were utilized to determine the dispersion of the MLS in PETG. The results indicate that the dispersion was concentration independent but maleation of the PETG led to a slight decrease in agglomeration. An increased ultimate tensile strength and modulus was observed in PETG nanocomposites. The barrier properties were improved by incorporating the MLS into the system. Maleation of the PETG resulted in significant yellowing of the nanocomposites.


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80739-80748 ◽  
Author(s):  
Hua-Dong Huang ◽  
Sheng-Yang Zhou ◽  
Peng-Gang Ren ◽  
Xu Ji ◽  
Zhong-Ming Li

The successful conversion from hydrophilic GONSs to hydrophobic ODA–GONSs imparts LDPE nanocomposite films with enhanced mechanical and barrier performances for potential packaging materials.


2022 ◽  
Vol 163 ◽  
pp. 106662
Author(s):  
Amit Suhag ◽  
Kishor Biswas ◽  
Sauraj Singh ◽  
Anurag Kulshreshtha

2021 ◽  
Vol 877 ◽  
pp. 27-33
Author(s):  
Ya Li Sun ◽  
Yi Hua Wen ◽  
Qing Cai Liu ◽  
Jui Chin Chen ◽  
Manual Reyes de Guzman ◽  
...  

A solution blending technique was employed to form a nanocomposite film of polyvinyl alcohol modified with carbon nanotube and zinc oxide (CNT/ZnO). The film was characterized using a tensile testing machine, X-ray diffraction, scanning electron microscopy, a contact angle device, and barrier property measurement. When the CNT/ZnO content was 1.2 phr, the results from mechanical property and water vapor permeation tests showed that the nanocomposite film had good tensile strength and water resistance. Moreover, CNT/ZnO improved the hydrophobicity of the film. CNT/ZnO/can improve the performance of PVA and is a good nanofiller of PVA. The results of this research might have the opportunity to be used as packaging film materials in the future.


2021 ◽  
Author(s):  
Yamanappagouda Amaregouda ◽  
Kantharaju Kamanna ◽  
Tilak Gasti ◽  
Vijay Kumbar

Abstract Herein, we described novel biogenic preparation of the CuO nanorods and its surface modification with L-alanine amino acid accelerated by microwave irradiation. The effect of surface functionalized CuO nanorods on the polyvinyl alcohol/carboxymethyl cellulose film physico-mechanical properties were investigated through various characterization techniques. The tensile strength was improved from 28.58 ± 0.73 MPa to 43.40 ± 0.93 MPa, UV shielding ability and barrier to the water vapors were highly enhanced when PVA/CMC matrices filled with 8 wt% of CuO-L-alanine. In addition, the prepared films exhibited acceptable overall migration limit and readily undergoes soil burial degradation. Nevertheless, CuO-L-alanine incorporated films showed potent antioxidant activity against DPPH radicals and had high antibacterial activity against Staphylococcus aureus and Escherichia coli, and antifungal activity against Candida albicans and Candida tropicalis. Furthermore, the nanocomposite films showed negligible cytotoxic effect on HEK293 and Caco-2 cell lines. In these contexts, the developed nanocomposite films can be implementing as an active food packaging material.


2021 ◽  
Vol 6 ◽  
pp. 22-37
Author(s):  
Zhang Siaobin ◽  
V.V Lebedev ◽  
D.V Miroshnichenko

The article is devoted to the problem of obtaining packaging materials that combine a high level of gas and / or moisture resistance and strength with the ability to quickly decompose without harmful effects on the environment. The purpose of the research described in the article is to study the possibility of making such a material, which, during the period of use, will not only be resistant to the effects of various bacteria, but even prevent their appearance, and upon burial it will be biodegradable. The initial components, namely polyvinyl alcohol, hydroxypropyl methylcellulose, and humic acids of coal origin (as antibacterial additives) were reasonably selected. The modifying effect of humic substances obtained from three different samples of low-grade Ukrainian coal has been studied. In the course of the studies performed, it was found that humic acids of different origins and with different characteristics have a specific effect on the processes of structure formation in solutions of polyvinyl alcohol and hydroxypropyl methylcellulose. In particular, it was shown that in polyvinyl alcohol and methylcellulose solutions with the addition of humic acids that do not contain particles of carbon residues of various degrees of dispersion, an increase in the formation of an ordered structure is observed. Micrographs of solutions of polyvinyl alcohol and hydroxypropyl methylcellulose with humic acids are presented. The peculiarities of the influence of humic substances on the processes of structure formation of solutions of polyvinyl alcohol and hydroxypropyl methylcellulose have been investigated in order to obtain hybrid environmentally friendly biodegradable polymer films. The corresponding experimental-statistical mathematical models have been developed, they describe the dependence of the conditional viscosity and conductivity of polyvinyl alcohol and hydroxypropyl methylcellulose on the content of humic acids, the duration of preparation and one of the characteristics of the raw materials used to obtain humic acids. The corresponding equations are given. Keywords: biodegradable polymer films, coal, humic acids, polyvinyl alcohol, hydroxypropyl methylcellulose, experimental statistical mathematical models Corresponding author Zhang Siaobin, e-mail: [email protected]


Sign in / Sign up

Export Citation Format

Share Document