Application of Functionalized Carbon-Based Nanomaterials in Membrane Separation: Carbon Nanotubes and Graphene

Author(s):  
Ange-Therese Akono

Cement is the most widely consumed material globally, with the cement industry accounting for 8% of human-caused greenhouse gas emissions. Aiming for cement composites with a reduced carbon footprint, this study investigates the potential of nanomaterials to improve mechanical characteristics. An important question is to increase the fraction of carbon-based nanomaterials within cement matrices while controlling the microstructure and enhancing the mechanical performance. Specifically, this study investigates the fracture response of Portland cement reinforced with one- and two-dimensional carbon-based nanomaterials, such as carbon nanofibres, multiwalled carbon nanotubes, helical carbon nanotubes and graphene oxide nanoplatelets. Novel processing routes are shown to incorporate 0.1–0.5 wt% of nanomaterials into cement using a quadratic distribution of ultrasonic energy. Scratch testing is used to probe the fracture response by pushing a sphero-conical probe against the surface of the material under a linearly increasing vertical force. Fracture toughness is then computed using a nonlinear fracture mechanics model. Nanomaterials are shown to bridge nanoscale air voids, leading to pore refinement, and a decrease in the porosity and the water absorption. An improvement in fracture toughness is observed in cement nanocomposites, with a positive correlation between the fracture toughness and the mass fraction of nanofiller for graphene-reinforced cement. Moreover, for graphene-reinforced cement, the fracture toughness values are in the range of 0.701 to 0.717 MPa m . Thus, this study illustrates the potential of nanomaterials to toughen cement while improving the microstructure and water resistance properties. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.


2017 ◽  
Vol 19 (15) ◽  
pp. 10187-10195 ◽  
Author(s):  
Mei Feng ◽  
David R. Bell ◽  
Judong Luo ◽  
Ruhong Zhou

Carbon-based nanomaterials such as graphyne, graphene, and carbon nanotubes have attracted considerable attention for their applications, but questions remain regarding their biosafety through potential adverse interactions with important biomolecules.


2014 ◽  
Vol 807 ◽  
pp. 13-39
Author(s):  
Bavani Kasinathan ◽  
Ruzniza Mohd Zawawi

Carbon-based nanomaterials such as graphene, carbon nanotubes, carbon nanofibers and nanodiamonds have been fascinated considerable attention as promising materials for drug sensing. These materials have tremendous amount of attraction due to some extraordinary features such as excellent electrical and thermal conductivities as well as high mechanical strength. Hence, these nanomaterials have been used extensively in sensor technology in order to achieved desired sensitivities. To date, carbon based nanomaterials have been exploit in the development of various drug sensing due to their simple preparation methods, and cost effectiveness. The aim of this review is to focus upon carbon based nanomaterials predominantly on drugs sensing applications. This review has been written in summary form including properties, fabrication method, and analytical performances.Abbreviation:Au, Gold; CNFs, Carbon Nanofibers; CNTs, Carbon Nanotubes; CVD, Chemical Vapour Deposition; D-, Dextrorotatory enantiomer; D, Dimensional; DNase, deoxyribonuclease; ESD, Electrospinning deposition; GCE, Glassy Carbon Electrode; Gr, Graphene; GrO, Graphene Oxide; ILs, ionic liquids; L-, Levorotatory enantiomer; LOD, Limit of Detection; MTase, Methyltransferases; MW, Microwave; MWCNTs, Multi-walled Carbon nanotubes; NDs, Nanodiamonds; NPs, Nanoparticles; PECVD, Plasma Enhanced Chemical Vapour Deposition; RGO, Reduced Graphene Oxide; SPE, Screen-Printed Electrode; SPR, Surface Plasmon resonance; ssDNA, single-stranded DNA; SWCNTs, Single-walled Carbon nanotubes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 894 ◽  
Author(s):  
Azam Salmankhani ◽  
Zohre Karami ◽  
Amin Hamed Mashhadzadeh ◽  
Mohammad Reza Saeb ◽  
Vanessa Fierro ◽  
...  

Although the properties of carbon nanotubes (CNTs) are very well-known and are still extensively studied, a thorough understanding of other carbon-based nanomaterials such as C3N nanotubes (C3NNTs) is still missing. In this article, we used molecular dynamics simulation to investigate the effects of parameters such as chirality, diameter, number of walls, and temperature on the mechanical properties of C3N nanotubes, C3N nanobuds, and C3NNTs with various kinds of defects. We also modeled and tested the corresponding CNTs to validate the results and understand how replacing one C atom of CNT by one N atom affects the properties. Our results demonstrate that the Young’s modulus of single-walled C3NNTs (SWC3NNTs) increased with diameter, irrespective of the chirality, and was higher in armchair SWC3NNTs than in zigzag ones, unlike double-walled C3NNTs. Besides, adding a second and then a third wall to SWC3NNTs significantly improved their properties. In contrast, the properties of C3N nanobuds produced by attaching an increasing number of C60 fullerenes gradually decreased. Moreover, considering C3NNTs with different types of defects revealed that two-atom vacancies resulted in the greatest reduction of all the properties studied, while Stone–Wales defects had the lowest effect on them.


Nanoscale ◽  
2016 ◽  
Vol 8 (13) ◽  
pp. 6969-6974 ◽  
Author(s):  
Thomas M. McCoy ◽  
Amelia C. Y. Liu ◽  
Rico F. Tabor

The aqueous dispersibility of carbon-based nanomaterials, namely graphene oxide (GO), reduced graphene oxide (rGO) and carbon nanotubes (CNTs), can be controlled by light via the photoisomerisation of a photoswitchable surfactant molecule adsorbed to the surface of these materials.


2020 ◽  
Vol 8 (15) ◽  
pp. 3123-3137 ◽  
Author(s):  
Pinar Sinem Omurtag Ozgen ◽  
Sezen Atasoy ◽  
Belma Zengin Kurt ◽  
Zehra Durmus ◽  
Gulsah Yigit ◽  
...  

Carbon-based nanomaterials (CNMs) have attracted great attention in biomedical applications such as cancer imaging and therapy.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 872 ◽  
Author(s):  
Ana Maria Díez-Pascual

Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nanosized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties [...]


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2861
Author(s):  
Tomasz Koczorowski ◽  
Magdalena Cerbin-Koczorowska ◽  
Tomasz Rębiś

Phthalocyanines and porphyrazines as macrocyclic aza-analogues of well-known porphyrins were deposited on diverse carbon-based nanomaterials and investigated as sensing devices. The extended π-conjugated electron system of these macrocycles influences their ability to create stable hybrid systems with graphene or carbon nanotubes commonly based on π–π stacking interactions. During a 15-year period, the electrodes modified by deposition of these systems have been applied for the determination of diverse analytes, such as food pollutants, heavy metals, catecholamines, thiols, glucose, peroxides, some active pharmaceutical ingredients, and poisonous gases. These procedures have also taken place, on occasion, in the presence of various polymers, ionic liquids, and other moieties. In the review, studies are presented that were performed for sensing purposes, involving azaporphyrins embedded on graphene, graphene oxide or carbon nanotubes (both single and multi-walled ones). Moreover, possible methods of electrode fabrication, limits of detection of each analyte, as well as examples of macrocyclic compounds applied as sensing materials, are critically discussed.


2021 ◽  
Vol 1 (3) ◽  
pp. 109-159
Author(s):  
Shamroza Mubarik ◽  
Nawal Qureshi ◽  
Zainab Sattar ◽  
Aqeela Shaheen ◽  
Ambreen Kalsoom ◽  
...  

The utilization of biomass waste to produce valuable products has extraordinary advantages as far as both the economy and climate are concerned, which have become particularly significant lately. The large-scale manufacturing of agricultural waste, mainly rice by-products (rice husk, rice straw, and rice bran), empowers them to be the most broadly examined biomasses as they contain lignin, cellulose, and hemicellulose. Rice waste was first used to incorporate bulk materials, while the manufacturing of versatile nanostructures from rice waste at low cost has been developed in recent years and attracts much consideration nowadays. Carbon-based nanomaterials including graphene, carbon nanotubes, carbon dots, fullerenes, and carbon nanofibers have tremendous potential in climate and energy-related applications. Various methods have been reported to synthesize high-value carbon nanomaterials, but the use of green technology for the synthesis of carbon nanomaterials is most common nowadays because of the abundant availability of the starting precursor, non-toxicity, low fabrication cost, ease of modification, and eco-friendly nature; therefore, reusing low-value biomass waste for the processing of renewable materials to fabricate high-value products is remarkable. Carbon nanomaterials derived from rice waste have broad applications in various disciplines owing to their distinctive physicochemical, electrical, optical, mechanical, thermal, and enhanced biocompatibility properties. The main objective of this review and basic criteria of selecting examples and explanations is to highlight the green routes for the synthesis of carbon nanomaterials—i.e., graphene, carbon nanotubes, and carbon dots—from rice biomass waste, and their extensive applications in biomedical research (bio-imaging), environmental (water remediation), and energy-related (electrodes for supercapacitors, Li-ion battery, fuel cells, and solar cells) applications. This review summarizes recent advancements, challenges, and trends for rice waste obtained from renewable resources for utilization in the fabrication of versatile carbon-based nanomaterials.


Radiocarbon ◽  
2018 ◽  
Vol 60 (4) ◽  
pp. 1101-1114
Author(s):  
Tibor Szabó ◽  
Róbert Janovics ◽  
Marianna Túri ◽  
István Futó ◽  
István Papp ◽  
...  

ABSTRACTCarbon-based nanomaterials of different dimensions (1–3D, tubes, bundles, films, papers and sponges, graphene sheets) have been created and their characteristic properties have been discussed intensively in the literature. Due to their unique advantageous, tunable properties these materials became promising candidates in new generations of applications in many research laboratories and, recently, in industries as well. Protein-based bio-nanocomposites are referred to as materials of the future, which may serve as conceptual revolution in the development of integrated optical devices, e.g. optical switches, microimaging systems, sensors, telecommunication technologies or energy harvesting and biosensor applications. In our experiments, we designed various carbon-based nanomaterials either doped or not doped with nitrogen or sulfur during catalytic chemical vapor deposition synthesis. Radio- and isotope analytical studies have shown that the used starting materials, precursors and carriers have a strong influence on the geometry and physico-/chemical characteristics of the carbon nanotubes produced. After determining the 14C isotope constitution 53 m/m% balance was found in the reaction center protein/carbon nanotubes complex in a sensitive way that was prepared in our laboratory. The result is essential in determining the yield of conversion of light energy to chemical potential in this bio-hybrid system.


Sign in / Sign up

Export Citation Format

Share Document