Effective Electron-Ion Interactions in Dense Coulomb Systems

1993 ◽  
Vol 22 (5) ◽  
pp. 353-357
Author(s):  
I. M Tkachenko ◽  
G. Verdú Martín ◽  
J. L. Muñoz-Cobo González ◽  
V. A Nastasyuk
Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 125
Author(s):  
Tobias Gulden ◽  
Alex Kamenev

We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels.


1963 ◽  
Vol 41 (9) ◽  
pp. 1397-1404
Author(s):  
Hirohisa Endo ◽  
Shota Suekane

An elementary theory of the electrical resistivity of monovalent liquid metals is given. On using the theory of the plasma oscillations of conduction electrons, the electron–ion interactions are separated into two parts: one gives the effective electron–ion interactions which are screened as the result of the effects of the plasma oscillations of the conduction electrons and contributes directly to the electrical resistivity; the other describes the interactions between the ions and the plasma oscillations. The screened electron–ion interaction is defined as the pseudo-potential of the ion.The theory constructed on the basis of the free-electron model is applied in the first instance to estimate the electrical resistivity of liquid sodium near the melting point. Callaway's potential and the correlation function of ions determined from neutron diffraction experiments are used and the mean free path of a conduction electron is calculated numerically. Therefore, in our theory, the "plasma term" and the "structure term" of Ziman's theory are not treated separately.


Author(s):  
Lev G. D’YACHKOV ◽  
Mikhail M. VASILYEV ◽  
Oleg F. PETROV ◽  
Sergey F. SAVIN ◽  
Igor V. CHURILO

We discuss the possibility of using static magnetic traps as an alternative to electrostatic traps for forming and confining structures of charged dust particles in a gas discharge plasma in the context of our study of strongly interacting Coulomb systems. Some advantages of confining structures in magnetic traps over electrostatic ones are shown. Also we provide a review of the related researches carried out first in laboratory conditions, and then under microgravity conditions including the motivation of performing the experiments aboard the International Space Station (ISS). The preparations of a new space experiment «Coulomb-magnet» as well as the differences of a new equipment from previously used are described. We proposed the main tasks of the new experiment as a study of the dynamics and structure of active monodisperse and polydisperse macroparticles in an inhomogeneous magnetic field under microgravity conditions, including phase transitions and the evolution of such systems in the kinetic heating of dust particles by laser radiation. Key words: Coulomb structures, magnetic trap, antiprobotron, diamagnetic particles, dust particles, microgravity.


1998 ◽  
Vol 63 (4) ◽  
pp. 507-514
Author(s):  
Madan L. Parmar ◽  
Ch. V. Nageshwara Rao ◽  
Suresh Chand Attri

Partial molar volumes of ammonium aluminium sulfate and potassium aluminium sulfate in DMF-water mixtures (5-20 wt.% of DMF) have been determined from solution density measurements at various temperatures and electrolyte concentrations. The data were evaluated by using Masson equation and the obtained parameters were interpreted in terms of ion-solvent and ion-ion interactions. Both electrolytes have been found to act as the structure makers/promotors in DMF-water systems.


2021 ◽  
Vol 9 (10) ◽  
pp. 3642-3651
Author(s):  
Jihyun Lim ◽  
Do-Yeong Choi ◽  
Woongsik Jang ◽  
Hyeon-Ho Choi ◽  
Yun-Hi Kim ◽  
...  

Small molecule organic material, tris(4-(1-phenyl-1H-benzo[d]imidazole)phenyl)phosphine oxide (TIPO) was newly synthesised and introduced into an n-type interlayer in planar perovskite solar cells for effective electron transport.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Yu-Hui Chen ◽  
Sebastian P. Horvath ◽  
Jevon J. Longdell ◽  
Xiangdong Zhang

1997 ◽  
Vol 11 (04) ◽  
pp. 129-138 ◽  
Author(s):  
V. Sa-Yakanit ◽  
V. D. Lakhno ◽  
Klaus Haß

The generalized path integral approach is applied to calculate the ground state energy and the effective mass of an electron-plasmon interacting system for a wide range of densities. It is shown that in the self-consistent approximation an abrupt transition between the weak coupling and the strong coupling region of interaction exists. The transition occurs at low electron densities according to a value of 418 for rs, when Wigner crystallization is possible. For densities of real metals, the electron bandwidth is calculated and a comparison with experimental results is given.


Sign in / Sign up

Export Citation Format

Share Document