scholarly journals Unification of massless field equations solutions for any spin

Author(s):  
Sergio Hojman ◽  
Felipe Asenjo

Abstract A unification in terms of exact solutions for massless Klein–Gordon, Dirac, Maxwell, Rarita– Schwinger, Einstein, and bosonic and fermionic fields of any spin is presented. The method is based on writing all of the relevant dynamical fields in terms of products and derivatives of pre–potential functions, which satisfy d’Alambert equation. The coupled equations satisfied by the pre–potentials are non-linear. Remarkably, there are particular solutions of (gradient) orthogonal pre–potentials that satisfy the usual wave equation which may be used to construct exact non–trivial solutions to Klein–Gordon, Dirac, Maxwell, Rarita–Schwinger, (linearized and full) Einstein and any spin bosonic and fermionic field equations, thus giving rise to an unification of the solutions of all massless field equations for any spin. Some solutions written in terms of orthogonal pre–potentials are presented. Relations of this method to previously developed ones, as well as to other subjects in physics are pointed out.

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
J. Socorro ◽  
Omar E. Núñez ◽  
Rafael Hernández-Jiménez

A flat Friedmann-Robertson-Walker (FRW) multiscalar field cosmology is studied with a particular potential of the form V(ϕ,σ)=V0e-λ1ϕ-λ2σ, which emerges as a relation between the time derivatives of the scalars field momenta. Classically, by employing the Hamiltonian formalism of two scalar fields (ϕ,σ) with standard kinetic energy, exact solutions are found for the Einstein-Klein-Gordon (EKG) system for different scenarios specified by the parameter λ2=λ12+λ22, as well as the e-folding function Ne which is also computed. For the quantum scheme of this model, the corresponding Wheeler-DeWitt (WDW) equation is solved by applying an appropriate change of variables.


2015 ◽  
Vol 30 (15) ◽  
pp. 1550084 ◽  
Author(s):  
Süleyman Demir ◽  
Murat Tanişli ◽  
Mustafa Emre Kansu

In this paper, it is proven that the associative octons including scalar, pseudoscalar, pseudovector and vector values are convenient and capable tools to generalize the Maxwell–Dirac like field equations of electromagnetism and linear gravity in a compact and simple way. Although an attempt to describe the massless field equations of electromagnetism and linear gravity needs the sixteen real component mathematical structures, it is proved that these equations can be formulated in terms of eight components of octons. Furthermore, the generalized wave equation in terms of potentials is derived in the presence of electromagnetic and gravitational charges (masses). Finally, conservation of energy concept has also been investigated for massless fields.


2013 ◽  
Vol 28 (21) ◽  
pp. 1350112 ◽  
Author(s):  
SÜLEYMAN DEMİR ◽  
MURAT TANIŞLI ◽  
TÜLAY TOLAN

Generalized field equations of linear gravity are formulated on the basis of octons. When compared to the other eight-component noncommutative hypercomplex number systems, it is demonstrated that associative octons with scalar, pseudoscalar, pseudovector and vector values present a convenient and capable tool to describe the Maxwell–Proca-like field equations of gravitoelectromagnetism in a compact and simple way. Introducing massive graviton and gravitomagnetic monopole terms, the generalized gravitational wave equation and Klein–Gordon equation for linear gravity are also developed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Isaiah Elvis Mhlanga ◽  
Chaudry Masood Khalique

We study two nonlinear partial differential equations, namely, the symmetric regularized long wave equation and the Klein-Gordon-Zakharov equations. The Lie symmetry approach along with the simplest equation and exp-function methods are used to obtain solutions of the symmetric regularized long wave equation, while the travelling wave hypothesis approach along with the simplest equation method is utilized to obtain new exact solutions of the Klein-Gordon-Zakharov equations.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


1994 ◽  
Vol 09 (12) ◽  
pp. 2103-2115 ◽  
Author(s):  
D.G. BARCI ◽  
L.E. OXMAN

We consider a fermionic field obeying a second order equation containing a pair of complex conjugate mass parameters. After obtaining a natural representation for the different degrees of freedom, we are able to construct a unique vacuum as the more symmetric state (zero energy-momentum, charge and spin). This representation, unlike the real mass case, is not holomorphic in the Grassmann variables. The vacuum eigenstate allows the calculation of the field propagator which turns out to be half advanced plus half retarded.


1959 ◽  
Vol 1 (1) ◽  
pp. 80-94 ◽  
Author(s):  
T. M. Cherry

For investigating the steady irrotational isentropic flow of a perfect gas in two dimensions, the hodograph method is to determine in the first instance the position coordinates x, y and the stream function ψ as functions of velocity compoments, conveniently taken as q (the speed) and θ (direction angle). Inversion then gives ψ, q, θ as functions of x, y. The method has the great advantage that its field equations are linear, so that it is practicable to obtain exact solutions, and from any two solutions an infinity of others are obtainable by superposition. For problems of flow past fixed boundaries the linearity of the field equations is usually offset by non-linearity in the boundary conditions, but this objection does not arise in problems of transsonic nozzle design, where the rigid boundary is the end-point of the investigation.


Sign in / Sign up

Export Citation Format

Share Document