scholarly journals Electroacupuncture Mimics Exercise-Induced Changes in Skeletal Muscle Gene Expression in Women With Polycystic Ovary Syndrome

2020 ◽  
Vol 105 (6) ◽  
pp. 2027-2041 ◽  
Author(s):  
Anna Benrick ◽  
Nicolas J Pillon ◽  
Emma Nilsson ◽  
Eva Lindgren ◽  
Anna Krook ◽  
...  

Abstract Context Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown. Objective To identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS). Design/Participants In a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays. Results A single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes (P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis. Conclusion Our findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.

2020 ◽  
Author(s):  
Ada Admin ◽  
Solvejg L. Hansen ◽  
Kirstine N. Bojsen-Møller ◽  
Anne-Marie Lundsgaard ◽  
Frederikke L. Hendrich ◽  
...  

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle improving glucose uptake and metabolism in both healthy and type 2 diabetic individuals. In the present study, lean, hyperandrogenic women with PCOS (n=9) and healthy controls (CON, n=9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole body insulin action by 26% and insulin-stimulated leg glucose uptake by 53%, together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in maximal oxygen uptake. In skeletal muscle of CON, but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose handling proteins for insulin-stimulated glucose uptake in skeletal muscle, and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


2020 ◽  
Author(s):  
Ada Admin ◽  
Solvejg L. Hansen ◽  
Kirstine N. Bojsen-Møller ◽  
Anne-Marie Lundsgaard ◽  
Frederikke L. Hendrich ◽  
...  

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle improving glucose uptake and metabolism in both healthy and type 2 diabetic individuals. In the present study, lean, hyperandrogenic women with PCOS (n=9) and healthy controls (CON, n=9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole body insulin action by 26% and insulin-stimulated leg glucose uptake by 53%, together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in maximal oxygen uptake. In skeletal muscle of CON, but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose handling proteins for insulin-stimulated glucose uptake in skeletal muscle, and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


2019 ◽  
Vol 104 (11) ◽  
pp. 5372-5381 ◽  
Author(s):  
Nigel K Stepto ◽  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Kirsty A Walters ◽  
Raymond J Rodgers

Abstract Context Polycystic ovary syndrome (PCOS) is a common endocrine condition affecting 8% to 13% of women across the lifespan. PCOS affects reproductive, metabolic, and mental health, generating a considerable health burden. Advances in treatment of women with PCOS has been hampered by evolving diagnostic criteria and poor recognition by clinicians. This has resulted in limited clinical and basic research. In this study, we provide insights into the current and future research on the metabolic features of PCOS, specifically as they relate to PCOS-specific insulin resistance (IR), that may affect the most metabolically active tissue, skeletal muscle. Current Knowledge PCOS is a highly heritable condition, yet it is phenotypically heterogeneous in both reproductive and metabolic features. Human studies thus far have not identified molecular mechanisms of PCOS-specific IR in skeletal muscle. However, recent research has provided new insights that implicate energy-sensing pathways regulated via epigenomic and resultant transcriptomic changes. Animal models, while in existence, have been underused in exploring molecular mechanisms of IR in PCOS and specifically in skeletal muscle. Future Directions Based on the latest evidence synthesis and technologies, researchers exploring molecular mechanisms of IR in PCOS, specifically in muscle, will likely need to generate new hypothesis to be tested in human and animal studies. Conclusion Investigations to elucidate the molecular mechanisms driving IR in PCOS are in their early stages, yet remarkable advances have been made in skeletal muscle. Overall, investigations have thus far created more questions than answers, which provide new opportunities to study complex endocrine conditions.


2013 ◽  
Vol 126 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Victoria S. Sprung ◽  
Helen Jones ◽  
Christopher J. A. Pugh ◽  
Nabil F. Aziz ◽  
Christina Daousi ◽  
...  

PCOS (polycystic ovary syndrome) is associated with IR (insulin resistance), increased visceral fat and NAFLD (non-alcoholic fatty liver disease) all of which may contribute to endothelial dysfunction, an early marker of CVD (cardiovascular disease) risk. Our objective was to examine the relationships between endothelial dysfunction in PCOS, the volume of AT (adipose tissue) compartments and the size of intracellular TAG (triacylglycerol) pools in liver and skeletal muscle. A total of 19 women with PCOS (means±S.D.; 26±6 years, 36±5 kg/m2) and 16 control women (31±8 years, 30±6 kg/m2) were recruited. Endothelial function was assessed in the brachial artery using FMD (flow-mediated dilation). VAT (visceral AT) and abdominal SAT (subcutaneous AT) volume were determined by whole body MRI, and liver and skeletal muscle TAG by 1H-MRS (proton magnetic resonance spectroscopy). Cardiorespiratory fitness and HOMA-IR (homoeostasis model assessment of IR) were also determined. Differences between groups were analysed using independent Student's t tests and ANCOVA (analysis of co-variance). FMD was impaired in PCOS by 4.6% [95% CI (confidence interval), 3.0–7.7; P<0.001], and this difference decreased only slightly to 4.2% (95% CI, 2.4–6.1; P<0.001) when FMD was adjusted for individual differences in visceral and SAT and HOMA-IR. This magnitude of impairment was also similar in lean and obese PCOS women. The results suggest that endothelial dysfunction in PCOS is not explained by body fat distribution or volume. FMD might be a useful independent prognostic tool to assess CVD risk in this population.


2014 ◽  
Vol 102 (3) ◽  
pp. e29 ◽  
Author(s):  
E. Stener-Victorin ◽  
A. Benrick ◽  
M. Kokosar ◽  
M. Maliqueo ◽  
C. Behre ◽  
...  

2018 ◽  
Vol 104 (5) ◽  
pp. 1841-1854 ◽  
Author(s):  
Solvejg L Hansen ◽  
Pernille F Svendsen ◽  
Jacob F Jeppesen ◽  
Louise D Hoeg ◽  
Nicoline R Andersen ◽  
...  

2018 ◽  
Vol 103 (12) ◽  
pp. 4465-4477 ◽  
Author(s):  
Emma Nilsson ◽  
Anna Benrick ◽  
Milana Kokosar ◽  
Anna Krook ◽  
Eva Lindgren ◽  
...  

Abstract Context Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). Despite this, the mechanisms underlying insulin resistance in PCOS are largely unknown. Objective To investigate the genome-wide DNA methylation and gene expression patterns in skeletal muscle from women with PCOS and controls and relate them to phenotypic variations. Design/Participants In a case-control study, skeletal muscle biopsies from women with PCOS (n = 17) and age-, weight-, and body mass index‒matched controls (n = 14) were analyzed by array-based DNA methylation and mRNA expression profiling. Results Eighty-five unique transcripts were differentially expressed in muscle from women with PCOS vs controls, including DYRK1A, SYNPO2, SCP2, and NAMPT. Furthermore, women with PCOS had reduced expression of genes involved in immune system pathways. Two CpG sites showed differential DNA methylation after correction for multiple testing. However, an mRNA expression of ∼30% of the differentially expressed genes correlated with DNA methylation levels of CpG sites in or near the gene. Functional follow-up studies demonstrated that KLF10 is under transcriptional control of insulin, where insulin promotes glycogen accumulation in myotubes of human muscle cells. Testosterone downregulates the expression levels of COL1A1 and MAP2K6. Conclusion PCOS is associated with aberrant skeletal muscle gene expression with dysregulated pathways. Furthermore, we identified specific changes in muscle DNA methylation that may affect gene expression. This study showed that women with PCOS have epigenetic and transcriptional changes in skeletal muscle that, in part, can explain the metabolic abnormalities seen in these women.


Author(s):  
Alba Moreno-Asso ◽  
Ali Altıntaş ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Javier Botella ◽  
...  

Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with insulin resistance and impaired energy metabolism in skeletal muscle, the aetiology of which is currently unclear. Here, we mapped the gene expression profile of skeletal muscle from women with PCOS and determined if cultured primary myotubes retain the gene expression signature of PCOS in vivo. Transcriptomic analysis of vastus lateralis biopsies collected from PCOS women showed lower expression of genes associated with mitochondrial function while the expression of genes associated with the extracellular matrix was higher compared to controls. Altered skeletal muscle mRNA expression of mitochondrial-associated genes in PCOS was associated with lower protein expression of mitochondrial complex II to V, but not complex I, with no difference in mitochondrial DNA content. Transcriptomic analysis of primary myotube cultures established from biopsies did not display any differentially expressed genes between controls and PCOS. Comparison of gene expression profiles in skeletal muscle biopsies and primary myotube cultures showed lower expression of mitochondrial and energy metabolism-related genes in vitro, irrespective of the group. Together, our results show that the altered mitochondrial-associated gene expression in skeletal muscle in PCOS is not preserved in cultured myotubes, indicating that the in vivo extracellular milieu, rather than genetic or epigenetic factors, may drive this alteration. Dysregulation of mitochondrial-associated genes in skeletal muscle by extracellular factors may contribute to the impaired energy metabolism associated with PCOS.


Sign in / Sign up

Export Citation Format

Share Document