scholarly journals Peptide Purification, Complementary Deoxyribonucleic Acid (DNA) and Genomic DNA Cloning, and Functional Characterization of Ghrelin in Rainbow Trout

Endocrinology ◽  
2003 ◽  
Vol 144 (12) ◽  
pp. 5215-5226 ◽  
Author(s):  
Hiroyuki Kaiya ◽  
Masayasu Kojima ◽  
Hiroshi Hosoda ◽  
Shunsuke Moriyama ◽  
Akiyoshi Takahashi ◽  
...  

Abstract We have identified ghrelin from the stomach of rainbow trout. Four isoforms of ghrelin peptide were isolated: the C-terminal amidated type of rainbow trout ghrelin (rt ghrelin) composed of 24 amino acids (GSSFLSPSQKPQVRQGKGKPPRV-amide) is a basic form; des-VRQ-rt ghrelin, which deleted three amino acids (V13R14Q15) from rt ghrelin; and further two types of rt ghrelin that retained the glycine residue at the C terminus, rt ghrelin-Gly, and des-VRQ-rt ghrelin-Gly. The third serine residue was modified by octanoic acid, decanoic acid, or the unsaturated form of those fatty acids. In agreement with the isolated peptides, two cDNAs of different lengths were isolated. The rt ghrelin gene has five exons and four introns, and two different mRNA molecules are predicted to be produced by alternative splicing of the gene. A high level of ghrelin mRNA expression was detected in the stomach, and moderate levels were detected in the brain, hypothalamus, and intestinal tracts. Des-VRQ-rt ghrelin stimulated the release of GH in the rat in vivo. Furthermore, des-VRQ-rt ghrelin stimulated the release of GH, but not the release of prolactin and somatolactin in rainbow trout in vivo and in vitro. These results indicate that ghrelin is a novel GH secretagogue in rainbow trout that may affect somatic growth or osmoregulation through GH. Because ghrelin is expressed in various tissues other than stomach, it may play important role(s) in cellular function as a local regulator.

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Dan Ren ◽  
Tuofan Li ◽  
Xinyu Zhang ◽  
Xiaohui Yao ◽  
Wei Gao ◽  
...  

ABSTRACT Although astroviruses causes enteric diseases and encephalitis in humans and nephritis and hepatitis in poultry, astrovirus infection is thought to be self-limiting. However, little is known about its molecular mechanism. In this study, we found that a novel goose astrovirus (GAstV), GAstV-GD, and its open reading frame 2 (ORF2) could efficiently activate the innate immune response and induce a high level of OASL in vitro and in vivo. The truncation assay for ORF2 further revealed that the P2 domain of ORF2 contributed to stimulating OASL, whereas the acidic C terminus of ORF2 attenuated such activation. Moreover, the overexpression and knockdown of OASL could efficiently restrict and promote the viral replication of GAstV-GD, respectively. Our data not only give novel insights for elucidating self-limiting infection by astrovirus but also provide virus and host targets for fighting against astroviruses. IMPORTANCE Astroviruses cause gastroenteritis and encephalitis in human, and nephritis, hepatitis, and gout disease in poultry. However, the host immune response activated by astrovirus is mostly unknown. Here, we found that a novel goose astrovirus, GAstV-GD, and its ORF2 protein could efficiently induce a high level of OASL in vitro and in vivo, which could feed back to restrict the replication of GAstV-GD, revealing novel innate molecules triggered by astroviruses and highlighting that the ORF2 of GAstV-GD and OASL can be potential antiviral targets for astroviruses.


1999 ◽  
Vol 10 (7) ◽  
pp. 2425-2440 ◽  
Author(s):  
Cunle Wu ◽  
Ekkehard Leberer ◽  
David Y. Thomas ◽  
Malcolm Whiteway

The Saccharomyces cerevisiae Ste11p protein kinase is a homologue of mammalian MAPK/extracellular signal-regulated protein kinase kinase kinases (MAPKKKs or MEKKs) as well as theSchizosaccharomyces pombe Byr2p kinase. Ste11p functions in several signaling pathways, including those for mating pheromone response and osmotic stress response. The Ste11p kinase has an N-terminal domain that interacts with other signaling molecules to regulate Ste11p function and direct its activity in these pathways. One of the Ste11p regulators is Ste50p, and Ste11p and Ste50p associate through their respective N-terminal domains. This interaction relieves a negative activity of the Ste11p N terminus, and removal of this negative function is required for Ste11p function in the high-osmolarity glycerol (HOG) pathway. The Ste50p/Ste11p interaction is also important (but not essential) for Ste11p function in the mating pathway; in this pathway binding of the Ste11p N terminus with both Ste50p and Ste5p is required, with the Ste5p association playing the major role in Ste11p function. In vitro, Ste50p disrupts an association between the catalytic C terminus and the regulatory N terminus of Ste11p. In addition, Ste50p appears to modulate Ste11p autophosphorylation and is itself a substrate of the Ste11p kinase. Therefore, both in vivo and in vitro data support a role for Ste50p in the regulation of Ste11p activity.


2009 ◽  
Vol 418 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Claudia S. López ◽  
R. Sean Peacock ◽  
Jorge H. Crosa ◽  
Hans J. Vogel

In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121–206) has an αββαβ structure, whereas residues 76–120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the β4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 Å (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the β4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins.


2004 ◽  
Vol 85 (2) ◽  
pp. 535-545 ◽  
Author(s):  
Aiming Wang ◽  
Sumin Han ◽  
Hélène Sanfaçon

The putative NTP-binding protein (NTB) of Tomato ringspot nepovirus (ToRSV) contains a hydrophobic region at its C terminus consisting of two adjacent stretches of hydrophobic amino acids separated by a few amino acids. In infected plants, the NTB–VPg polyprotein (containing the domain for the genome-linked protein) is associated with endoplasmic reticulum-derived membranes that are active in ToRSV replication. Recent results from proteinase K protection assays suggested a luminal location for the VPg domain in infected plants, providing support for the presence of a transmembrane domain at the C terminus of NTB. In this study, we have shown that NTB–VPg associates with canine microsomal membranes in the absence of other viral proteins in vitro and adopts a topology similar to that observed in vivo in that the VPg is present in the lumen. Truncated proteins containing 60 amino acids at the C terminus of NTB and the entire VPg exhibited a similar topology, confirming that this region of the protein contains a functional transmembrane domain. Deletion of portions of the C-terminal hydrophobic region of NTB by mutagenesis and introduction of glycosylation sites to map the luminal regions of the protein revealed that only the first stretch of hydrophobic amino acids traverses the membrane, while the second stretch of hydrophobic amino acids is located in the lumen. Our results provide additional evidence supporting the hypothesis that the NTB–VPg polyprotein acts as a membrane-anchor for the replication complex.


1993 ◽  
Vol 13 (12) ◽  
pp. 7864-7873 ◽  
Author(s):  
B K Haarer ◽  
A S Petzold ◽  
S S Brown

We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.


2013 ◽  
Vol 94 (7) ◽  
pp. 1535-1546 ◽  
Author(s):  
David Neubauer ◽  
Martina Aumayr ◽  
Irene Gösler ◽  
Tim Skern

The 2A proteinase (2Apro) of human rhinoviruses cleaves the virally encoded polyprotein between the C terminus of VP1 and its own N terminus. Poor understanding of the 2Apro substrate specificity of this enzyme has hampered progress in developing inhibitors that may serve as antiviral agents. We show here that the 2Apro of human rhinovirus (HRV) 1A and 2 (rhinoviruses from genetic group A) cannot self-process at the HRV14 (a genetic group B rhinovirus) cleavage site. When the amino acids in the cleavage site of HRV2 2Apro (Ile-Ile-Thr-Thr-Ala*Gly-Pro-Ser-Asp) were singly or doubly replaced with the corresponding HRV14 residues (Asp-Ile-Lys-Ser-Tyr*Gly-Leu-Gly-Pro) at positions from P3 to P2′, HRV1A and HRV2 2Apro cleavage took place at WT levels. However, when three or more positions of the HRV1A or 2 2Apro were substituted (e.g. at P2, P1 and P2′), cleavage in vitro was essentially eliminated. Introduction of the full HRV14 cleavage site into a full-length clone of the HRV1A and transfection of HeLa cells with a transcribed RNA did not give rise to viable virus. In contrast, revertant viruses bearing cysteine at the P1 position or proline at P2′ were obtained when an RNA bearing the three inhibitory amino acids was transfected. Reversions in the enzyme affecting substrate specificity were not found in any of the in vivo experiments. Modelling of oligopeptide substrates onto the structure of HRV2 2Apro revealed no appreciable differences in residues of HRV2 and HRV14 in the respective substrate binding sites, suggesting that the overall shape of the substrate is important in determining binding efficiency.


1987 ◽  
Author(s):  
N Haigwood ◽  
E-P Pâques ◽  
G Mullenbach ◽  
G Moore ◽  
L DesJardin ◽  
...  

The clinical relevance of tissue-plasminogen-activator (t-PA) as a potent thrombolytic agent has recently been established. It has however been recognized that t-PA does not fulfill all conditions required for an ideal thrombolytic pharmaceutical agent; for example, its physiological stability and its short half life in vivo necessitate the use of very large clinical doses. We have therefore attempted to develop novel mutant t-PA proteins with improved properties by creating mutants by site-directed mutagenesis in M13 bacteriophage. Seventeen mutants were designed, cloned, and expressed in CHO cells. Modifications were of three types: alterations to glycosylation sites, truncations of the N- or C-termini, and amino acids changes at the cleavage site utilized to generate the two chain form of t-PA. The mutant proteins were analyzed in vitro for specific activity, fibrin dependence of the plasminogen activation, fibrin affinity, and susceptibility to inhibition by PAI.In brief, the results are: 1) some unglycosylated and partially glycosylated molecules obtained by mutagenesis are characterized by several-fold higher specific activity than wild type t-PA; 2) truncation at the C-terminus by three amino acids yields a molecule with increased fibrin specificity; 3) mutations at the cleavage site lead zo a decreased inhibition by PAI; and 4) recombinants of these genes have been constructed and the proteins were shown to possess multiple improved properties. The use of site directed mutagenesis has proved to be a powerful instrument to modulate the biological properties of t-PA.


1997 ◽  
Vol 324 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Simon PROSSER ◽  
Robert SARRA ◽  
Philip SWIGART ◽  
Andrew BALL ◽  
Shamshad COCKCROFT

Phosphatidylinositol transfer protein α (PITPα) is a 32 kDa protein of 270 amino acids that is essential for phospholipase C-mediated phosphatidylinositol bisphosphate hydrolysis. In addition, it binds and transfers phosphatidylinositol and phosphatidylcholine between membrane compartments in vitro. Here we have used limited proteolysis of PITPα by subtilisin to identify the structural requirements for function. Digestion by subtilisin results in the generation of a number of slightly smaller peptide fragments, the major fragment being identified as a 29 kDa protein. The fragments were resolved by size-exclusion chromatography and were found to be totally inactive in both in vivo PLC reconstitution assays and in vitro phosphatidylinositol transfer assays. N-terminal sequencing and MS of the major 29 kDa fragment shows that cleavage occurs at the C-terminus of PITP at Met246, leading to a deletion of 24 amino acid residues. We conclude that the C-terminus plays an important role in mediating PLC signalling in vivo and lipid transfer in vitro, supporting the notion that lipid transfer may be a facet of PITP function in vivo.


1993 ◽  
Vol 13 (12) ◽  
pp. 7864-7873
Author(s):  
B K Haarer ◽  
A S Petzold ◽  
S S Brown

We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.


Sign in / Sign up

Export Citation Format

Share Document