scholarly journals Ghrelin Inhibits the Proliferative Activity of Immature Leydig Cells in Vivo and Regulates Stem Cell Factor Messenger Ribonucleic Acid Expression in Rat Testis

Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4825-4834 ◽  
Author(s):  
M. L. Barreiro ◽  
F. Gaytan ◽  
J. M. Castellano ◽  
J. S. Suominen ◽  
J. Roa ◽  
...  

Abstract Ghrelin has emerged as putative regulator of an array of endocrine and nonendocrine functions, including cell proliferation. Recently, we provided evidence for the expression of ghrelin in mature, but not in undifferentiated, Leydig cells of rat and human testis. Yet testicular actions of ghrelin, other than modulation of testosterone secretion, remain unexplored. In the present study we evaluated the effects of ghrelin on proliferation of Leydig cell precursors during puberty and after selective elimination of mature Leydig cells by treatment with ethylene dimethane sulfonate. In these settings, intratesticular injection of ghrelin significantly decreased the proliferative activity of differentiating immature Leydig cells, estimated by 5-bromodeoxyuridine labeling. This response was selective and associated, in ethylene dimethane sulfonate-treated animals, with a decrease in the mRNA levels of stem cell factor (SCF), i.e. a key signal in spermatogenesis and a putative regulator of Leydig cell development. Thus, the effects of ghrelin on SCF gene expression were evaluated. In adult rats, ghrelin induced a significant decrease in SCF mRNA levels in vivo. Such an inhibitory action was also detected in vitro using cultures of staged seminiferous tubules. The inhibitory effect of ghrelin in vivo was dependent on proper FSH input, because it was detected in hypophysectomized rats only after FSH replacement. Overall, it is proposed that acquisition of ghrelin expression by Leydig cell precursors during differentiation may operate as a self-regulatory signal for the inhibition of the proliferative activity of this cell type through direct or indirect (i.e. SCF-mediated) mechanisms. In addition, we present novel evidence for the ability of ghrelin to modulate the expression of the SCF gene, which may have implications for the mode of action of this molecule in the testis as well as in other physiological systems.

2005 ◽  
Vol 187 (1) ◽  
pp. 117-124 ◽  
Author(s):  
K Svechnikov ◽  
V Supornsilchai ◽  
M-L Strand ◽  
A Wahlgren ◽  
D Seidlova-Wuttke ◽  
...  

Procymidone is a fungicide with anti-androgenic properties, widely used to protect fruits from fungal infection. Thereby it contaminates fruit products prepared for human consumption. Genistein-containing soy products are increasingly used as food additives with health-promoting properties. Therefore we examined the effects of long-term dietary administration (3 months) of the anti-androgen procymidone (26.4 mg/animal per day) or the phytoestrogen genistein (21.1 mg/animal per day) to rats on the pituitary-gonadal axis in vivo, as well as on Leydig cell steroidogenesis and on spermatogenesis ex vivo. The procymidone-containing diet elevated serum levels of LH and testosterone and, furthermore, Leydig cells isolated from procymidone-treated animals displayed an enhanced capacity for producing testosterone in response to stimulation by hCG or dibutyryl cAMP, as well as elevated expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450 scc) and cytochrome P450 17α (P450c17). In contrast, the rate of DNA synthesis during stages VIII and IX of spermatogenesis in segments of seminiferous tubules isolated from genistein-treated rats was decreased without accompanying changes in the serum level of either LH or testosterone. Nonetheless, genistein did suppress the ex vivo steroidogenic response of Leydig cells to hCG or dibutyryl cAMP by down-regulating their expression of P450 scc. Considered together, our present findings demonstrate that long-term dietary administration of procymidone or genistein to rats exerts different effects on the pituitary–gonadal axis in vivo and on Leydig cell steroidogenesis ex vivo. Possibly as a result of disruption of hormonal feedback control due to its anti-androgenic action, procymidone activates this endocrine axis, thereby causing hyper-gonadotropic activation of testicular steroidogenesis. In contrast, genistein influences spermatogenesis and significantly inhibits Leydig cell steroidogenesis ex vivo without altering the serum level of either LH or testosterone.


2004 ◽  
Vol 167 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Michail S. Davidoff ◽  
Ralf Middendorff ◽  
Grigori Enikolopov ◽  
Dieter Riethmacher ◽  
Adolf F. Holstein ◽  
...  

The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.


Endocrinology ◽  
2021 ◽  
Author(s):  
Pierre-Olivier Hébert-Mercier ◽  
Francis Bergeron ◽  
Nicholas M Robert ◽  
Samir Mehanovic ◽  
Kenley Joule Pierre ◽  
...  

Abstract Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown. The STAT5B transcription factor is a downstream effector of GH signaling in other systems. While STAT5B is present in both primary and Leydig cell lines, its function in these cells has yet to be ascertained. Here we report that treatment of MA-10 Leydig cells with GH or overexpression of STAT5B induces Star mRNA levels and increases steroid hormone output. The mouse Star promoter contains a consensus STAT5B element (TTCnnnGAA) at -756 bp to which STAT5B binds in vitro (EMSA and supershift) and in vivo (ChIP) in a GH-induced manner. In functional promoter assays, STAT5B was found to activate a -980 bp mouse Star reporter. Mutating the -756 bp element prevented STAT5B binding but did not abrogate STAT5B-responsiveness. STAT5B was found to functionally cooperate with DNA-bound cJUN. The STAT5B/cJUN cooperation was only observed in Leydig cells and not in Sertoli or fibroblast cells, indicating that additional Leydig cell-enriched transcription factors are required. The STAT5B/cJUN cooperation was lost only when both STAT5B and cJUN elements were mutated. In addition to identifying the Star gene as a novel target for STAT5B in Leydig cells, our data provide important new insights into the mechanism of GH and STAT5B action in the regulation of Leydig cell function.


2008 ◽  
Vol 295 (1) ◽  
pp. G45-G53 ◽  
Author(s):  
Bin Hu ◽  
Lisa M. Colletti

Stem cell factor (SCF) and its receptor c-kit are important in hematopoiesis and cellular proliferation. c-kit has also been identified as a cell surface marker for progenitor cells. We have previously shown that there is a large reservoir of hepatic SCF, and this molecule plays a significant role in liver regeneration after 70% hepatectomy. In the current study, we further examined the expression of SCF and c-kit in acetaminophen (APAP)-induced liver injury in C57BL/6J mice or SCF-deficient sl-sld mice and their appropriate wild-type controls. Following APAP-induced liver injury, c-kit mRNA expression increased, with peak levels detected 48 h postinjury. Hepatic SCF mRNA levels after APAP injury were also increased, with peak levels seen 16 h post-APAP. The mortality rate in SCF-deficient mice treated with APAP was significantly higher than that of wild-type mice; furthermore, administration of exogenous SCF significantly reduced the mortality of APAP-treated wild-type mice. Bromodeoxyuridine incorporation experiments showed that SCF significantly increased hepatocyte proliferation at 48 and 72 h in APAP-treated mice. SCF inhibited APAP-induced hepatocyte apoptosis and increased Bcl-2 and Bcl-xL expression, suggesting that this decrease in hepatocyte apoptosis is mediated through Bcl-2 and Bcl-xL. In summary, SCF and c-kit expression was increased after APAP-induced liver injury. Administration of exogenous SCF reduces mortality in APAP-treated mice, increases hepatocyte proliferation, and prevents hepatocyte apoptosis induced by APAP, suggesting that these molecules are important in the liver's recovery from these injuries.


1998 ◽  
Vol 59 (4) ◽  
pp. 983-990 ◽  
Author(s):  
Paula C. Gentry ◽  
George W. Smith ◽  
David R. Leighr ◽  
Bagna Bao ◽  
Michael F. Smith

1992 ◽  
Vol 175 (1) ◽  
pp. 245-255 ◽  
Author(s):  
B K Wershil ◽  
M Tsai ◽  
E N Geissler ◽  
K M Zsebo ◽  
S J Galli

Interactions between products of the mouse W locus, which encodes the c-kit tyrosine kinase receptor, and the Sl locus, which encodes a ligand for c-kit receptor, which we have designated stem cell factor (SCF), have a critical role in the development of mast cells. Mice homozygous for mutations at either locus exhibit several phenotypic abnormalities including a virtual absence of mast cells. Moreover, the c-kit ligand SCF can induce the proliferation and maturation of normal mast cells in vitro or in vivo, and also can result in repair of the mast cell deficiency of Sl/Sld mice in vivo. We now report that administration of SCF intradermally in vivo results in dermal mast cell activation and a mast cell-dependent acute inflammatory response. This effect is c-kit receptor dependent, in that it is not observed when SCF is administered to mice containing dermal mast cells expressing functionally inactive c-kit receptors, is observed with both glycosylated and nonglycosylated forms of SCF, and occurs at doses of SCF at least 10-fold lower on a molar basis than the minimally effective dose of the classical dermal mast cell-activating agent substance P. These findings represent the first demonstration in vivo that a c-kit ligand can result in the functional activation of any cellular lineage expressing the c-kit receptor, and suggest that interactions between the c-kit receptor and its ligand may influence mast cell biology through complex effects on proliferation, maturation, and function.


2000 ◽  
Vol 113 (1) ◽  
pp. 161-168 ◽  
Author(s):  
W. Yan ◽  
J. Suominen ◽  
J. Toppari

Stem cell factor (SCF) plays an important role in migration, adhesion, proliferation, and survival of primordial germ cells and spermatogonia during testicular development. However, the function of SCF in the adult testis is poorly described. We have previously shown that, in the presence of SCF, there were more type A spermatogonia incorporating thymidine at stage XII of rat seminiferous tubules cultured in vitro than in the absence of SCF, implying that the increased DNA synthesis might result from enhanced survival of spermatogonia. To explore the potential pro-survival function of SCF during spermatogenesis, the seminiferous tubules from stage XII were cultured in the presence or absence of SCF (100 ng/ml) for 8, 24, 48, and 72 hours, respectively, and apoptosis was analyzed by DNA laddering and in situ 3′-end labeling (ISEL) staining. Surprisingly, not only spermatogonia, but also spermatocytes and spermatids, were protected from apoptosis in the presence of SCF. Apoptosis took place much later and was less severe in the SCF-treated tubules than in the controls. Based on previous studies showing that FSH prevents germ cells from undergoing apoptosis in vitro, and that SCF level is increased dramatically in response to FSH stimulation, we also tested if the pro-survival effect of FSH is mediated through SCF by using a function-blocking monoclonal antibody, ACK-2, to block SCF/c-kit interaction. After 24 hours of blockade, the protective effect of FSH was partially abolished, as manifested by DNA laddering and ISEL analyses. The present study demonstrates that SCF acts as an important survival factor for germ cells in the adult rat testis and FSH pro-survival effect on germ cells is mediated partially through the SCF/c-kit pathway.


2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1954-1962 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
IK McNiece ◽  
ES Yi ◽  
CP Alzona ◽  
...  

Abstract Recombinant rat stem cell factor (rrSCF) and recombinant human granulocyte colony-stimulating factor (G-CSF) coinjected for 1 week in rats cause a synergistic increase in mature marrow neutrophils accompanied by a striking decrease in erythroid and lymphoid marrow elements. The spleens of the same rats show increased granulopoiesis as well as increased erythropoiesis as compared with the spleens of rats treated with either growth factor alone. Splenic extramedullary erythropoiesis may act to compensate for the decrease in marrow erythropoiesis. The coinjection of rrSCF and G-CSF causes an increase in marrow mast cells at the end of 1 week, but the increase is much less than in rrSCF-alone-treated rats. The combination of rrSCF and G- CSF increases the rate of release of marrow neutrophils into the circulation and causes a dramatic synergistic peripheral neutrophilia, beginning especially after 4 days of treatment. Colony-forming assays of all experimental groups showed a synergistic increase in colony- forming unit granulocyte-macrophage (CFU-GM) in the marrow, but not in peripheral blood, after coincubation with SCF plus granulocyte- macrophage CSF (GM-CSF) as opposed to GM-CSF alone, showing anatomic compartmentalization between a more primitive marrow CFU-GM subset and a more mature peripheral blood CFU-GM subset. In vivo daily administration of SCF plus GM-CSF results in a synergistic increase in marrow neutrophils, but not the striking synergistic increase in circulating neutrophils that is observed with SCF plus G-CSF.


Sign in / Sign up

Export Citation Format

Share Document