scholarly journals Activation of the Y1 Receptor by Neuropeptide Y Regulates the Growth of Prostate Cancer Cells

Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1466-1473 ◽  
Author(s):  
Massimiliano Ruscica ◽  
Elena Dozio ◽  
Stéphane Boghossian ◽  
Giorgio Bovo ◽  
Vera Martos Riaño ◽  
...  

This study deals with the role of neuropeptide Y (NPY) in the regulation of cell proliferation. NPY is expressed in the normal and tumoral prostate, but no data on its possible role in prostate cancer (PCa) progression are available. Therefore, we evaluated the direct effect of NPY on the growth of the human PCa cell lines LNCaP (androgen dependent) and DU145 and PC3 (androgen independent). All PCa cell lines expressed Y1-R gene and protein. NPY treatment reduced the proliferation of LNCaP and DU145 cells and increased that of PC3 cells. The Y1-R antagonist BIBP3226 abolished such effects, suggesting a mandatory role of Y1-R in this process. LNCaP cells showed elevated constitutive levels of phosphorylated ERK1/2, which were not affected by NPY. In DU145 cells, NPY stimulated a long-lasting ERK1/2 activation, whereas, in PC3 cells, this effect was rapid and transient and required activation of protein kinase C. Moreover, in both cell lines, pretreatment with BIBP3226 prevented the NPY-induced ERK1/2 phosphorylation, further supporting Y1-R involvement. NPY treatment reduced forskolin-stimulated cAMP accumulation only in PC3 cells and did not change intracellular calcium concentration in any PCa cell line. These data indicate that NPY may directly regulate PCa cell growth via Y1-R. The direction of this effect appears to be related to the time kinetics of MAPK activation, i.e. long-lasting vs. transient, and to the clone-specific involvement of other intracellular signals. These findings suggest that NPY-related mechanisms might play a relevant role in the progression of PCa, at both androgen dependent and independent stages.

2011 ◽  
Vol 18 (4) ◽  
pp. 385-400 ◽  
Author(s):  
Giovanni Luca Gravina ◽  
Francesco Marampon ◽  
Foteini Petini ◽  
Leda Biordi ◽  
David Sherris ◽  
...  

One of the major obstacles in the treatment of hormone-refractory prostate cancer (HRPC) is the development of chemo-resistant tumors. The aim of this study is to evaluate the role of Palomid 529 (P529), a novel TORC1/TORC2 inhibitor, in association with docetaxel (DTX) and cisplatin (CP). This work utilizes a wide panel of prostatic cancer cell lines with or without basal activation of Akt as well as twoin vivomodels of aggressive HRPC. The blockade of Akt/mTOR activity was associated to reduced cell proliferation and induction of apoptosis. Comparison of IC50 values calculated for PTEN-positive and PTEN-negative cell lines as well as the PTEN transfection in PC3 cells or PTEN silencing in DU145 cells revealed that absence of PTEN was indicative for a better activity of the drug. In addition, P529 synergized with DTX and CP. The strongest synergism was achieved when prostate cancer (PCa) cells were sequentially exposed to CP or DTX followed by treatment with P529. Treatment with P529 before the exposure to chemotherapeutic drugs resulted in a moderate synergism, whereas intermediated values of combination index were found when drugs were administered simultaneously.In vivotreatment of a combination of P529 with DTX or CP increased the percentage of complete responses and reduced the number of mice with tumor progression. Our results provide a rationale for combinatorial treatment using conventional chemotherapy and a Akt/mTOR inhibitor as promising therapeutic approach for the treatment of HRPC, a disease largely resistant to conventional therapies.


2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 838
Author(s):  
Andreia de Almeida ◽  
Dimitris Parthimos ◽  
Holly Dew ◽  
Oliver Smart ◽  
Marie Wiltshire ◽  
...  

Aquaporins are required by cells to enable fast adaptation to volume and osmotic changes, as well as microenvironmental metabolic stimuli. Aquaglyceroporins play a crucial role in supplying cancer cells with glycerol for metabolic needs. Here, we show that AQP3 is differentially expressed in cells of a prostate cancer panel. AQP3 is located at the cell membrane and cytoplasm of LNCaP cell while being exclusively expressed in the cytoplasm of Du145 and PC3 cells. LNCaP cells show enhanced hypoxia growth; Du145 and PC3 cells display stress factors, indicating a crucial role for AQP3 at the plasma membrane in adaptation to hypoxia. Hypoxia, both acute and chronic affected AQP3′s cellular localization. These outcomes were validated using a machine learning classification approach of the three cell lines and of the six normoxic or hypoxic conditions. Classifiers trained on morphological features derived from cytoskeletal and nuclear labeling alongside corresponding texture features could uniquely identify each individual cell line and the corresponding hypoxia exposure. Cytoskeletal features were 70–90% accurate, while nuclear features allowed for 55–70% accuracy. Cellular texture features (73.9% accuracy) were a stronger predictor of the hypoxic load than the AQP3 distribution (60.3%).


2013 ◽  
Vol 20 (5) ◽  
pp. 677-689 ◽  
Author(s):  
Holger H H Erb ◽  
Regina V Langlechner ◽  
Patrizia L Moser ◽  
Florian Handle ◽  
Tineke Casneuf ◽  
...  

Development and progression of prostate cancer (PCa) are associated with chronic inflammation. The cytokine interleukin 6 (IL6) can influence progression, differentiation, survival, and angiogenesis of PCa. To identify novel pathways that are triggered by IL6, we performed a gene expression profiling of two PCa cell lines, LNCaP and MDA PCa 2b, treated with 5 ng/ml IL6. Interferon (IFN) regulatory factor 9 (IRF9) was identified as one of the most prevalent IL6-regulated genes in both cell lines. IRF9 is a mediator of type I IFN signaling and acts together with STAT1 and 2 to activate transcription of IFN-responsive genes. The IL6 regulation of IRF9 was confirmed at mRNA and protein levels by quantitative real-time PCR and western blot respectively in both cell lines and could be blocked by the anti-IL6 antibody Siltuximab. Three PCa cell lines, PC3, Du-145, and LNCaP-IL6+, with an autocrine IL6 loop displayed high expression of IRF9. A tissue microarray with 36 PCa tissues showed that IRF9 protein expression is moderately elevated in malignant areas and positively correlates with the tissue expression of IL6. Downregulation and overexpression of IRF9 provided evidence for an IFN-independent role of IRF9 in cellular proliferation of different PCa cell lines. Furthermore, expression of IRF9 was essential to mediate the antiproliferative effects of IFNα2. We concluded that IL6 is an inducer of IRF9 expression in PCa and a sensitizer for the antiproliferative effects of IFNα2.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 409
Author(s):  
Alicja Chrzanowska ◽  
Wioletta Olejarz ◽  
Grażyna Kubiak-Tomaszewska ◽  
Andrzej K. Ciechanowicz ◽  
Marta Struga

Purpose: To assess cytotoxic effect of ciprofloxacin conjugates with fatty acids on prostate cancer cells (LNCaP and DU-145) with different hormone sensitivity, based on previous promising results from the PC3 cells. Methods: Cytotoxicity were estimated using MTT and LDH tests, whereas its mechanisms were estimated by apoptosis and IL-6 assays. The intensity of proteins involved in lipid metabolism was determined using ML-CS assay. Results: The hormone insensitive DU-145 cells were more vulnerable than the hormone sensitive LNCaP cells. The IC50 values for oleic (4), elaidic (5) and docosahexaenoic acid (8) conjugates were 20.2 µM, 17.8 µM and 16.5 µM, respectively, in DU-145 cells, whereas in LNCaP cells IC50 exceeded 20 µM. The strong conjugate cytotoxicity was confirmed in the LDH test, the highest (70.8%) for compound (5) and 64.2% for compound (8) in DU-145 cells. This effect was weaker for LNCaP cells (around 60%). The cytotoxic effect of unconjugated ciprofloxacin and fatty acids was weaker. The early apoptosis was predominant in LNCaP while in DU-145 cells both early and late apoptosis was induced. The tested conjugates decreased IL-6 release in both cancer cell lines by almost 50%. Proteomic analysis indicated influence of the ciprofloxacin conjugates on lipid metabolic proteins in prostatic cancer. Conclusion: Our findings suggested the cytotoxic potential of ciprofloxacin conjugates with reduction in proteins involved in prostate cancer progress.


2015 ◽  
Vol 23 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Jan Kroon ◽  
Martin Puhr ◽  
Jeroen T Buijs ◽  
Geertje van der Horst ◽  
Daniëlle M Hemmer ◽  
...  

Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
John I. Githaiga ◽  
Hudson K. Angeyo ◽  
Kenneth A. Kaduki ◽  
Wallace D. Bulimo

The use of Raman spectroscopy combined with multivariate chemometrics for disease diagnosis has attracted great attention from researchers in recent years. This is because it is a noninvasive and nondestructive detection approach with enhanced sensitivity. However, a major challenge when analyzing spectra from biological samples has been the detection of subtle biochemical alterations buried in background and fluorescence noise. This work reports a qualitative chemometrics-assisted investigation of subtle biochemical alterations associated with prostate malignancy in model biological tissue (metastatic androgen insensitive (PC3) and immortalized normal (PNT1a) prostate cell lines). Raman spectra were acquired from PC3 and PNT1a cells at various stages of growth, and their biochemical alterations were determined from difference spectra between the two cell lines (for prominent alterations) and principal component analysis (PCA) (for subtle alterations). The Raman difference spectra were computed by subtracting the normalized mean spectral intensities of PNT1a cells from the normalized mean spectral intensities of PC3 cells. These difference spectra revealed prominent biochemical alterations associated with the malignant PC3 cells at 566 ± 0.70 cm−1, 630 cm−1, 1370 ± 0.86 cm−1, and 1618 ± 1.73 cm−1 bands. The band intensity ratios at 566 ± 0.70 cm−1 and 630 cm−1 suggested that prostate malignancy can be associated with an increase in relative amounts of nucleic acids and lipids, respectively, whereas those at 1370 ± 0.86 cm−1 and 1618 ± 1.73 cm−1 suggested that prostate malignancy can be associated with a decrease in relative amounts of saccharides and tryptophan, respectively. In the analysis using PCA, intermediate-order and high-order principal components (PCs) were used to extract the subtle biochemical fingerprints associated with the cell lines. This revealed subtle biochemical differences at 1076 cm−1, (1232, 1234 cm−1), (1276, 1278 cm−1), (1330, 1333 cm−1), (1434, 1442 cm−1), and (1471, 1479 cm−1). The band intensity ratios at 1076 cm−1 and 1232 cm−1 suggested that prostate malignancy can be associated with an increase in subtle amounts of nucleic acids and amide III components, respectively. The method reported here has demonstrated that subtle biochemical alterations can be extracted from Raman spectra of normal and malignant cell lines. The identified subtle bands could play an important role in quantitative monitoring of early biomarker alterations associated with prostate cancer proliferation.


2020 ◽  
Vol 24 (8) ◽  
pp. 505-507
Author(s):  
Anna Sanchez ◽  
Driss El Ouardi ◽  
Fatma Zohra Houfaf Khoufaf ◽  
Mouhamed Idrissou ◽  
Tiphanie Boisnier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document