scholarly journals Differential Interactions between Th1/Th2, Th1/Th3, and Th2/Th3 Cytokines in the Regulation of Thyroperoxidase and Dual Oxidase Expression, and of Thyroglobulin Secretion in Thyrocytes in Vitro

Endocrinology ◽  
2008 ◽  
Vol 149 (4) ◽  
pp. 1534-1542 ◽  
Author(s):  
Sylvie Poncin ◽  
Benoit Lengelé ◽  
Ides M. Colin ◽  
Anne-Catherine Gérard

Hypothyroidism, together with glandular atrophy, is the usual outcome of destructive autoimmune thyroiditis. The impairment in the thyroid function results either from cell destruction or from Th1 cytokine-induced alteration in hormonogenesis. Here, we investigated the impact of the local immune context on the thyroid function. We used two rat thyroid cell lines (PCCL3 and FRTL-5) and human thyrocytes incubated with IL-1α/interferon (IFN) γ together with IL-4, a Th2 cytokine, or with TGF-β, or IL-10, two Th3 cytokines. We first observed that IL-4 totally blocked IL-1α/interferon γ-induced alteration in dual oxidase and thyroperoxidase expression, and in thyroglobulin secretion. By contrast, TGF-β and IL-10 had no such effect. They rather repressed thyrocyte function as do Th1 cytokines. In addition, IL-4 blocked IL-10-induced repression of thyrocyte function, but not that induced by TGF-β. In conclusion, Th1 cytokine- and IL-10-induced local inhibitory actions on thyroid function can be totally overturned by Th2 cytokines. These data provide new clues about the influence of the immune context on thyrocyte function.

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 112 ◽  
Author(s):  
Cesidio Giuliani

Previous studies have shown that quercetin inhibits thyroid function both in vitro and in vivo. An attempt to evaluate the effect of quercetin at the promoter level of the thyroid-specific genes led to the observation that this compound induces the basal activity of the reporter vector. Therefore, the action of quercetin has been evaluated on the basal activity of several reporter vectors: The PGL3 basic, promoter and control vectors from Promega, and a pSV-based chloramphenicol acetyltransferase (CAT) reporter vector. In the Fisher Rat Thyroid cell Line FRTL-5 thyroid cells transiently transfected, quercetin 10 μM increased the basal activity of all the reporter vectors evaluated, although the degree of the effect was significantly different among them. The analysis of the difference among the regulatory regions of these vectors identified the activator protein 1 (AP-1) binding site as one of the potential sites involved in the quercetin effect. Electromobility shift assay experiments showed that the treatment with quercetin induced the binding of a protein complex to an oligonucleotide containing the AP-1 consensus binding site. This is the first study showing an effect of quercetin on AP-1 activity in thyroid cells. Further studies are in progress to understand the role of AP-1 activation in the effects of quercetin on thyroid function.


2018 ◽  
Vol 7 (11) ◽  
pp. 1196-1207 ◽  
Author(s):  
Maurício Martins da Silva ◽  
Lueni Lopes Felix Xavier ◽  
Carlos Frederico Lima Gonçalves ◽  
Ana Paula Santos-Silva ◽  
Francisca Diana Paiva-Melo ◽  
...  

Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10−9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


2008 ◽  
Vol 198 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Ling Jin ◽  
Vanessa Chico-Galdo ◽  
Claude Massart ◽  
Christine Gervy ◽  
Viviane De Maertelaere ◽  
...  

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3–4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T4) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology…). Besides, T4 induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


2020 ◽  
Vol 177 (2) ◽  
pp. 483-493
Author(s):  
Li Wang ◽  
Wenli Xu ◽  
Qi Zhou ◽  
Bojin Xu ◽  
Yunlu Sheng ◽  
...  

Abstract PCB118, a 2,3′,4,4′,5-pentachlorobiphenyl, has been shown to destroy thyroidal ultrastructure and induce thyrocyte autophagy. Previously, we reported that PCB118 promoted autophagosome formation in vivo and in vitro, but more details remain to be revealed. To explore the underlying mechanism by which PCB118 regulates thyrocyte autophagy, Fischer rat thyroid cell line-5 (FRTL-5) cells were exposed to different doses of PCB118 at 0, 0.25, 2.5, and 25 nM for 0–48 h. Western blot analysis of autophagy-related proteins P62, BECLIN1, and LC3 demonstrated that PCB118 induced autophagy formation in dose- and time-dependent manner. Moreover, laser scanning confocal microscopy and flow cytometry showed PCB118 treatment led to time- and dose-dependent increase in intracellular calcium concentration ([Ca2+]i). Additionally, PCB118 promoted store-operated Ca2+ entry (SOCE) channel followed by significant increase of ORAI1 and STIM1 protein levels. On the other hand, PCB118 induced thyroidal autophagy via class III β-tubulin (TUBB3)/death-associated protein kinase 2 (DAPK2)/myosin regulatory light chain (MRLC)/autophagy-related 9A (ATG9A) pathway in FRTL-5 cells. Pretreatment with SOCE inhibitor SKF96365 reduced cytosolic Ca2+, ORAI1, STIM1, and BECLIN1 levels as well as LC3 II/LC3 I ratio, while increased P62 expression. SKF96365 also inhibited TUBB3/DAPK2/MRLC/ATG9A pathway in FRTL-5 cells treated by PCB118. Our results provide evidence that PCB118 may induce thyroidal autophagy through TUBB3-related signaling pathway, and these effects are likely to be regulated by calcium influx via SOCE channel.


1988 ◽  
Vol 118 (2) ◽  
pp. 199-203 ◽  
Author(s):  
J. Ginsberg ◽  
P. G. Murray

ABSTRACT The ability of the non-phorbol protein kinase C (PKC) activator 12-hydroxy-daphnetoxin (mezerein) to modulate differentiated thyroid function was examined in vitro. A dose-dependent inhibition of TSH-stimulated iodide organification was observed in porcine thyroid cells exposed to mezerein. Under identical conditions mezerein caused the translocation of PKC from its inactive cytosolic form to an active membrane-bound form in thyroid cell extracts. The relative biological potencies of mezerein and the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA), to inhibit thyroid function in vitro corresponded to their abilities to activate PKC. This effect was also observed when dibutyryl cyclic AMP was used, implying a post-receptor site of action. To provide further evidence for this concept, the effects of mezerein and TPA on receptor-related events were studied. Neither mezerein nor TPA had any effect on the binding of radiolabelled TSH to solubilized porcine thyroid membranes. However, both mezerein and TPA were capable of stimulating cyclic AMP (cAMP) production in porcine thyroid cells in the basal state but could not augment TSH or forskolin-activated cAMP release. These data provide evidence that activation of PKC plays a role in the regulation of differentiated thyroid function in vitro and suggest that the effects of PKC are complex, with independent actions on cAMP accumulation and post-receptor events. J. Endocr. (1988) 118, 199–203


2012 ◽  
Vol 51 (05) ◽  
pp. 170-178 ◽  
Author(s):  
M. Wendisch ◽  
R. Freudenberg ◽  
R. Runge ◽  
L. Oehme ◽  
G.J. Meyer ◽  
...  

SummaryPurpose: We evaluated the DNA damaging potential of Auger electrons emitted in the decay of 99mTc compared to α-particles of 211At. Material and methods: The impact of 99mTc and 211At was monitored in a NIS-expressing rat thyroid cell model PC Cl3 with varying, yet defined intra- and extracellular radionuclide distribution (using ± perchlorate). The radiotoxicity of 99mTc and 211At was studied by the comet assay under neutral and alkaline conditions and colony formation. Results: In the presence of perchlorate, the radioactivity yielding 37 % cellular survival, A37, was estimated to be (0.27 ± 0.02) MBq/ml and (450 ± 30) MBq/ml for 211At and 99mTc, respectively. In absence of perchlorate, cellular radiotracer uptake was similar for both radionuclides (2.2 %, 2.7 %), yet the A37 was reduced by 82% for the α-emitter and by 95 % for 99mTc. Cellular dose increased by a factor of 5 (211At) and 38 (99mTc). Comet assays revealed an increased DNA damage after intracellular uptake of both radiotracers. Conclusions: The data indicate damage to the cell to occur from absorbed dose without recognizable contribution from intracellular heterogeneity of radionuclide distribution. Comet assay under alkaline and neutral conditions did not reveal any shift to more complex DNA damage after radionuclide uptake. Cellular uptake of 99mTc and 211At increased cellular dose and reduced clonogenic survival.


1991 ◽  
Vol 124 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Kazuya Zeki ◽  
Hiroyuki Azuma ◽  
Hidero Suzuki ◽  
Isao Morimoto ◽  
Sumiya Eto

Abstract. We investigated the effects of IL-1, IL-2, IL-6, interferon-γ and tumour necrosis factor-α on growth and cAMP generation of FRTL-5 cells. IL-1 produced a significant stimulation of [3H]thymidine incorporation into FRTL-5 cells without TSH, whereas IL-1 caused significant reductions in [3H]thymidine incorporation induced by TSH or forskolin, which is known as an adenylate cyclase activator. Intracellular cAMP generation of FRTL-5 cells was stimulated by IL-1, whereas TSH-stimulated cAMP generation was inhibited by IL-1. These effects of IL-1 was neutralized by addition of anti-IL-1 antibody. The studies suggested that IL-1 blocks the effects of TSH on proliferation and cAMP generation of FRTL-5 cells on a post-receptor site of TSH.


1987 ◽  
Vol 116 (1_Suppl) ◽  
pp. S242-S245 ◽  
Author(s):  
Francesco Saverio Ambesi-Impiombato ◽  
Giovanni Villone

Abstract. Thyroid cell proliferation has been studied using an in vitro system of rat thyroid follicular cell strain (FRTL-5). While growing in continuous culture, this strain is still differentiated and non-tumourigenic. Both advantages and limitations in the use of such system for studies of thyroid cell growth should be considered. Some obvious limitations should be considered, such as the species (rat) from which FRTL-5 cells were originated, their long-term growth outside the animals, the presence of a chronic TSH stimulation. On the other hand, several advantages as the growth in hormonally and chemically defined media, their dependence upon TSH in the medium, their genetic homogeneity and their widespread use in many laboratories render the FRTL-5 strain a useful experimental tool. Studies on cell proliferation and mechanism of action of hormones, growth factors and human autoimmune IgG have been and are being performed, with the assumption that FRTL-5 cells are the in vitro equivalent of thyroid follicular cells.


Sign in / Sign up

Export Citation Format

Share Document