scholarly journals Critical Role of Egr Transcription Factors in Regulating Insulin Biosynthesis, Blood Glucose Homeostasis, and Islet Size

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3040-3053 ◽  
Author(s):  
Isabelle Müller ◽  
Oliver G. Rössler ◽  
Christine Wittig ◽  
Michael D. Menger ◽  
Gerald Thiel

Expression of early growth response protein (Egr)-1, a protein of the Egr family of zinc finger transcription factors, is stimulated in glucose-treated pancreatic β-cells and insulinoma cells. The purpose of this study was to elucidate the role of Egr transcription factors in pancreatic β-cells in vivo. To overcome the problem associated with redundancy of functions between Egr proteins, conditional transgenic mice were generated expressing a dominant-negative mutant of Egr-1 in pancreatic β-cells. The Egr-1 mutant interferes with DNA binding of all Egr proteins and thus impairs the biological functions of the entire Egr family. Expression of the Egr-1 mutant reduced expression of TGFβ and basic fibroblast growth factor, known target genes of Egr-1, whereas the expression of Egr-1, Egr-3, Ets-like gene-1 (Elk-1), and specificity protein-3 was not changed in the presence of the Egr-1 mutant. Expression of the homeobox protein pancreas duodenum homeobox-1, a major regulator of insulin biosynthesis, was reduced in islets expressing the Egr-1 mutant. Accordingly, insulin mRNA and protein levels were reduced by 75 or 25%, respectively, whereas expression of glucagon and somatostatin was not altered after expression of the Egr-1 mutant in β-cells. Glucose tolerance tests revealed that transgenic mice expressing the Egr-1 mutant in pancreatic β-cells displayed impaired glucose tolerance. In addition, increased caspase-3/7 activity was detected as a result of transgene expression, leading to a 20% decrease of the size of the islets. These results show that Egr proteins play an important role in controlling insulin biosynthesis, glucose homeostasis, and islet size of pancreatic β-cells in vivo.

2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2020 ◽  
Vol 21 (13) ◽  
pp. 4668
Author(s):  
Rebecca Scheuer ◽  
Stephan Ernst Philipp ◽  
Alexander Becker ◽  
Lisa Nalbach ◽  
Emmanuel Ampofo ◽  
...  

The regulation of insulin biosynthesis and secretion in pancreatic β-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic β-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2038-2047 ◽  
Author(s):  
Zhi-Liang Chu ◽  
Chris Carroll ◽  
Jean Alfonso ◽  
Veronica Gutierrez ◽  
Hongmei He ◽  
...  

We recently showed that activation of G protein-coupled receptor 119 (GPR119) (also termed glucose dependent insulinotropic receptor) improves glucose homeostasis via direct cAMP-mediated enhancement of glucose-dependent insulin release in pancreatic β-cells. Here we show that GPR119 also stimulates incretin hormone release and thus may regulate glucose homeostasis by this additional mechanism. GPR119 mRNA was found to be expressed at significant levels in intestinal subregions that produce glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1. Furthermore, in situ hybridization studies indicated that most GLP-1-producing cells coexpress GPR119 mRNA. In GLUTag cells, a well-established model of intestinal L-cell function, the potent GPR119 agonist AR231453 stimulated cAMP accumulation and GLP-1 release. When administered in mice, AR231453 increased active GLP-1 levels within 2 min after oral glucose delivery and substantially enhanced total glucose-dependent insulinotropic peptide levels. Blockade of GLP-1 receptor signaling with exendin(9–39) reduced the ability of AR231453 to improve glucose tolerance in mice. Conversely, combined administration of AR231453 and the DPP-4 inhibitor sitagliptin to wild-type mice significantly amplified both plasma GLP-1 levels and oral glucose tolerance, relative to either agent alone. In mice lacking GPR119, no such enhancement was seen. Thus, GPR119 regulates glucose tolerance by acting on intestinal endocrine cells as well as pancreatic β-cells. These data also suggest that combined stimulation of incretin hormone release and protection against incretin hormone degradation may be an effective antidiabetic strategy.


2017 ◽  
Vol 448 ◽  
pp. 108-121 ◽  
Author(s):  
Lukas A. Berchtold ◽  
Michela Miani ◽  
Thi A. Diep ◽  
Andreas N. Madsen ◽  
Valentina Cigliola ◽  
...  

2014 ◽  
Vol 222 (3) ◽  
pp. G13-G25 ◽  
Author(s):  
James E Bowe ◽  
Zara J Franklin ◽  
Astrid C Hauge-Evans ◽  
Aileen J King ◽  
Shanta J Persaud ◽  
...  

The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasisin vivohas become an essential tool. Several techniques exist for measuring different aspects of glucose tolerance and each of these methods has distinct advantages and disadvantages. Thus the appropriate methodology may vary from study to study depending on the desired end-points, the animal model, and other practical considerations. This review outlines the most commonly used techniques for assessing glucose tolerance in rodents and details the factors that should be taken into account in their use. Representative scenarios illustrating some of the practical considerations of designingin vivoexperiments for the measurement of glucose homeostasis are also discussed.


2019 ◽  
Vol 317 (4) ◽  
pp. C843-C856 ◽  
Author(s):  
Lisa Kelly ◽  
Mohammed M. Almutairi ◽  
Shams Kursan ◽  
Romario Pacheco ◽  
Eduardo Dias-Junior ◽  
...  

The Na+K+2Cl− cotransporter-2 ( Nkcc2, Slc12a1) is abundantly expressed in the kidney and its inhibition with the loop-diuretics bumetanide and furosemide has been linked to transient or permanent hyperglycemia in mice and humans. Notably, Slc12a1 is expressed at low levels in hypothalamic neurons and in insulin-secreting β-cells of the endocrine pancreas. The present study was designed to determine if global elimination of one of the Slc12a1 products, i.e., Nkcc2 variant a ( Nkcc2a), the main splice version of Nkcc2 found in insulin-secreting β-cells, has an impact on the insulin and glucagon secretory responses and fuel homeostasis in vivo. We have used dynamic tests of glucose homeostasis in wild-type mice and mice lacking both alleles of Nkcc2a ( Nkcc2aKO) and assessed their islet secretory responses in vitro. Under basal conditions, Nkcc2aKO mice have impaired glucose homeostasis characterized by increased blood glucose, intolerance to the sugar, delayed/blunted in vivo insulin and glucagon responses to glucose, and increased glycemic responses to the gluconeogenic substrate alanine. Further, we provide evidence of conserved quantitative secretory responses of Nkcc2aKO islets within a context of increased islet size related to hyperplastic/hypertrophic glucagon- and insulin-positive cells (α-cells and β-cells, respectively), normal total islet Cl− content, and reduced β-cell expression of the Cl− extruder Kcc2.


2000 ◽  
Vol 279 (3) ◽  
pp. E684-E694 ◽  
Author(s):  
Yuguang Shi ◽  
Jamil Kanaani ◽  
Virginie Menard-Rose ◽  
Yan Hui Ma ◽  
Pi-Yun Chang ◽  
...  

The functional role of glutamate decarboxylase (GAD) and its product GABA in pancreatic islets has remained elusive. Mouse β-cells express the larger isoform GAD67, whereas human islets express only the smaller isoform GAD65. We have generated two lines of transgenic mice expressing human GAD65 in pancreatic β-cells (RIP7-hGAD65, Lines 1 and 2) to study the effect that GABA generated by this isoform has on islet cell function. The ascending order of hGAD65 expression and/or activity in β-cells was Line 1 heterozygotes < Line 2 heterozygotes < Line 1 homozygotes. Line 1 heterozygotes have normal glucose tolerance, whereas Line 1 homozygotes and Line 2 heterozygotes exhibit impaired glucose tolerance and inhibition of insulin secretion in vivo in response to glucose. In addition, fasting levels of blood glucose are elevated and insulin is decreased in Line 1 homozygotes. Pancreas perfusion experiments suggest that GABA generated by GAD65 may function as a negative regulator of first-phase insulin secretion in response to glucose by affecting a step proximal to or at the KATP +channel.


Author(s):  
Marie-Sophie Nguyen-Tu ◽  
Aida Martinez-Sanchez ◽  
Isabelle Leclerc ◽  
Guy A. Rutter ◽  
Gabriela da Silva Xavier

AbstractTranscription factor 7-like 2 (TCF7L2) is a downstream effector of the Wnt/beta-catenin signalling pathway and its expression is critical for adipocyte development. The precise role of TCF7L2 in glucose and lipid metabolism in adult adipocytes remains to be defined. Here, we aim to investigate how changes in TCF7L2 expression in mature adipocytes affect glucose homeostasis. Tcf7l2 was selectively ablated from mature adipocytes in C57BL/6J mice using an adiponectin promoter-driven Cre recombinase to recombine alleles floxed at exon 1 of the Tcf7l2 gene. Mice lacking Tcf7l2 in mature adipocytes displayed normal body weight. Male mice exhibited normal glucose homeostasis at eight weeks of age. Male heterozygote knockout mice (aTCF7L2het) exhibited impaired glucose tolerance (AUC increased 1.14 ± 0.04 -fold, p=0.03), as assessed by intraperitoneal glucose tolerance test, and changes in fat mass at 16 weeks (increased by 1.4 ± 0.09-fold, p=0.007). Homozygote knockout mice exhibited impaired oral glucose tolerance at 16 weeks of age (AUC increased 2.15 ± 0.15-fold, p=0.0001). Islets of Langerhans exhibited impaired glucose-stimulated insulin secretion in vitro (decreased 0.54 ± 0.13-fold aTCF7L2KO vs control, p=0.02), but no changes in in vivo glucose-stimulated insulin secretion. Female mice in which one or two alleles of the Tcf7l2 gene was knocked out in adipocytes displayed no changes in glucose tolerance, insulin sensitivity or insulin secretion. Plasma levels of glucagon-like peptide-1 and gastric inhibitory polypeptide were lowered in knockout mice (decreased 0.57 ± 0.03-fold and 0.41 ± 0.12-fold, p=0.04 and p=0.002, respectively), whilst plasma free fatty acids and Fatty Acid Binding Protein 4 circulating levels were increased by 1.27 ± 0.07 and 1.78 ± 0.32-fold, respectively (p=0.05 and p=0.03). Mice with biallelic Tcf7l2 deletion exposed to high fat diet for 9 weeks exhibited impaired glucose tolerance (p=0.003 at 15 min after glucose injection) which was associated with reduced in vivo glucose-stimulated insulin secretion (decreased 0.51 ± 0.03-fold, p=0.02). Thus, our data indicate that loss of Tcf7l2 gene expression in adipocytes leads to impairments on metabolic responses which are dependent on gender, age and nutritional status. Our findings further illuminate the role of TCF7L2 in the maintenance of glucose homeostasis.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5185-5194 ◽  
Author(s):  
Dinesh Gautam ◽  
Inigo Ruiz de Azua ◽  
Jian Hua Li ◽  
Jean-Marc Guettier ◽  
Thomas Heard ◽  
...  

Previous studies have shown that β-cell M3 muscarinic acetylcholine receptors (M3Rs) play a key role in maintaining blood glucose homeostasis by enhancing glucose-dependent insulin release. In this study, we tested the hypothesis that long-term, persistent activation of β-cell M3Rs can improve glucose tolerance and ameliorate the metabolic deficits associated with the consumption of a high-fat diet. To achieve the selective and persistent activation of β-cell M3Rs in vivo, we generated transgenic mice that expressed the Q490L mutant M3R in their pancreatic β-cells (β-M3-Q490L Tg mice). The Q490L point mutation is known to render the M3R constitutively active. The metabolic phenotypes of the transgenic mice were examined in several in vitro and in vivo metabolic tests. In the presence of 15 mm glucose and the absence of M3R ligands, isolated perifused islets prepared from β-M3-Q490L Tg mice released considerably more insulin than wild-type control islets. This effect could be completely blocked by incubation of the transgenic islets with atropine (10 μm), an inverse muscarinic agonist, indicating that the Q490L mutant M3R exhibited ligand-independent signaling (constitutive activity) in mouse β-cells. In vivo studies showed that β-M3-Q490L Tg mice displayed greatly improved glucose tolerance and increased serum insulin levels as well as resistance to diet-induced glucose intolerance and hyperglycemia. These results suggest that chronic activation of β-cell M3Rs may represent a useful approach to boost insulin output in the long-term treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document