scholarly journals Impaired glucose tolerance, glucagon, and insulin responses in mice lacking the loop diuretic-sensitive Nkcc2a transporter

2019 ◽  
Vol 317 (4) ◽  
pp. C843-C856 ◽  
Author(s):  
Lisa Kelly ◽  
Mohammed M. Almutairi ◽  
Shams Kursan ◽  
Romario Pacheco ◽  
Eduardo Dias-Junior ◽  
...  

The Na+K+2Cl− cotransporter-2 ( Nkcc2, Slc12a1) is abundantly expressed in the kidney and its inhibition with the loop-diuretics bumetanide and furosemide has been linked to transient or permanent hyperglycemia in mice and humans. Notably, Slc12a1 is expressed at low levels in hypothalamic neurons and in insulin-secreting β-cells of the endocrine pancreas. The present study was designed to determine if global elimination of one of the Slc12a1 products, i.e., Nkcc2 variant a ( Nkcc2a), the main splice version of Nkcc2 found in insulin-secreting β-cells, has an impact on the insulin and glucagon secretory responses and fuel homeostasis in vivo. We have used dynamic tests of glucose homeostasis in wild-type mice and mice lacking both alleles of Nkcc2a ( Nkcc2aKO) and assessed their islet secretory responses in vitro. Under basal conditions, Nkcc2aKO mice have impaired glucose homeostasis characterized by increased blood glucose, intolerance to the sugar, delayed/blunted in vivo insulin and glucagon responses to glucose, and increased glycemic responses to the gluconeogenic substrate alanine. Further, we provide evidence of conserved quantitative secretory responses of Nkcc2aKO islets within a context of increased islet size related to hyperplastic/hypertrophic glucagon- and insulin-positive cells (α-cells and β-cells, respectively), normal total islet Cl− content, and reduced β-cell expression of the Cl− extruder Kcc2.

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3040-3053 ◽  
Author(s):  
Isabelle Müller ◽  
Oliver G. Rössler ◽  
Christine Wittig ◽  
Michael D. Menger ◽  
Gerald Thiel

Expression of early growth response protein (Egr)-1, a protein of the Egr family of zinc finger transcription factors, is stimulated in glucose-treated pancreatic β-cells and insulinoma cells. The purpose of this study was to elucidate the role of Egr transcription factors in pancreatic β-cells in vivo. To overcome the problem associated with redundancy of functions between Egr proteins, conditional transgenic mice were generated expressing a dominant-negative mutant of Egr-1 in pancreatic β-cells. The Egr-1 mutant interferes with DNA binding of all Egr proteins and thus impairs the biological functions of the entire Egr family. Expression of the Egr-1 mutant reduced expression of TGFβ and basic fibroblast growth factor, known target genes of Egr-1, whereas the expression of Egr-1, Egr-3, Ets-like gene-1 (Elk-1), and specificity protein-3 was not changed in the presence of the Egr-1 mutant. Expression of the homeobox protein pancreas duodenum homeobox-1, a major regulator of insulin biosynthesis, was reduced in islets expressing the Egr-1 mutant. Accordingly, insulin mRNA and protein levels were reduced by 75 or 25%, respectively, whereas expression of glucagon and somatostatin was not altered after expression of the Egr-1 mutant in β-cells. Glucose tolerance tests revealed that transgenic mice expressing the Egr-1 mutant in pancreatic β-cells displayed impaired glucose tolerance. In addition, increased caspase-3/7 activity was detected as a result of transgene expression, leading to a 20% decrease of the size of the islets. These results show that Egr proteins play an important role in controlling insulin biosynthesis, glucose homeostasis, and islet size of pancreatic β-cells in vivo.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


2018 ◽  
Vol 51 (1) ◽  
pp. 154-172 ◽  
Author(s):  
Fenglin Zhang ◽  
Jingjing Ye ◽  
Yingying Meng ◽  
Wei Ai ◽  
Han Su ◽  
...  

Background/Aims: It has been implicated that calcium supplementation is involved in reducing body weight/fat and improving glucose homeostasis. However, the underlying mechanisms are still not fully understood. Here, we investigated the effects of calcium supplementation on adipogenesis and glucose homeostasis in porcine bone marrow mesenchymal stem cells (pBMSCs) and high fat diet (HFD)-fed mice and explored the involved signaling pathways. Methods: In vitro, pBMSCs were treated with 4 mM extracellular calcium ([Ca2+]o) and/or 1 μM nifedipine, 0.1 μM BAPTA-AM, 1 μM KN-93, 50 nM wortmannin for 10 days. The intracellular calcium ([Ca2+]i) levels were measured using Fluo 3-AM by flow cytometry. The adipogenic differentiation of pBMSCs was determined by Oil Red-O staining and triglyceride assay. The expression of marker genes involved in adipogenesis (peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)) and glucose uptake (glucose transporter 4 (GLUT4)), as well as the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and PI3K/Akt-FoxO1/AS160 signaling pathways were determined by Western blotting. Glucose uptake and utilization were examined using 2-NBDG assay and glucose content assay, respectively. In vivo, C57BL/6J male mice were fed a HFD (containing 1.2% calcium) without or with 0.6% (w/w) calcium chloride in drinking water for 13 weeks. The adipogenesis, glucose homeostasis and the involvement of CaMKII and PI3K/Akt signaling pathway were also assessed. Results: In vitro, [Ca2+]o stimulated pBMSCs adipogenesis by increasing [Ca2+]i level and activating CaMKII and PI3K/Akt-FoxO1 pathways. In addition, [Ca2+]o promoted glucose uptake/utilization by enhancing AS160 phosphorylation, GLUT4 expression and translocation. However, the stimulating effects of [Ca2+]o on pBMSCs adipogenesis and glucose uptake/utilization were abolished by L-VGCC blocker Nifedipine, [Ca2+]i chelator BAPTA-AM, CaMKII inhibitor KN-93, or PI3K inhibitor Wortmannin. In vivo, calcium supplementation decreased body weight and fat content, increased adipocyte number, and improved glucose homeostasis, with elevated PPARγ and GLUT4 expression and PI3K/Akt activation in iWAT. Conclusion: calcium supplementation enhanced adipogenesis and glucose uptake in pBMSCs, which was coincident with the increased adipocyte number and improved glucose homeostasis in HFD-fed mice, and was associated with activation of CaMKII and PI3K/Akt-FoxO1/AS160 pathways. These data provided a broader understanding of the mechanisms underlying calcium-induced body weight/fat loss and glycemic control.


1996 ◽  
Vol 16 (1) ◽  
pp. 414-421 ◽  
Author(s):  
X Nan ◽  
P Tate ◽  
E Li ◽  
A Bird

MeCP2 is a chromosomal protein that is concentrated in the centromeric heterochromatin of mouse cells. In vitro, the protein binds preferentially to DNA containing a single symmetrically methylated CpG. To find out whether the heterochromatic localization of MeCP2 depended on DNA methylation, we transiently expressed MeCP2-LacZ fusion proteins in cultured cells. Intact protein was targeted to heterochromatin in wild-type cells but was inefficiently localized in mutant cells with low levels of genomic DNA methylation. Deletions within MeCP2 showed that localization to heterochromatin required the 85-amino-acid methyl-CpG binding domain but not the remainder of the protein. Thus MeCP2 is a methyl-CpG-binding protein in vivo and is likely to be a major mediator of downstream consequences of DNA methylation.


2017 ◽  
Vol 233 (3) ◽  
pp. 217-227 ◽  
Author(s):  
Maaike M Roefs ◽  
Françoise Carlotti ◽  
Katherine Jones ◽  
Hannah Wills ◽  
Alexander Hamilton ◽  
...  

Type 2 diabetes (T2DM) is associated with pancreatic islet dysfunction. Loss of β-cell identity has been implicated via dedifferentiation or conversion to other pancreatic endocrine cell types. How these transitions contribute to the onset and progression of T2DM in vivo is unknown. The aims of this study were to determine the degree of epithelial-to-mesenchymal transition occurring in α and β cells in vivo and to relate this to diabetes-associated (patho)physiological conditions. The proportion of islet cells expressing the mesenchymal marker vimentin was determined by immunohistochemistry and quantitative morphometry in specimens of pancreas from human donors with T2DM (n = 28) and without diabetes (ND, n = 38) and in non-human primates at different stages of the diabetic syndrome: normoglycaemic (ND, n = 4), obese, hyperinsulinaemic (HI, n = 4) and hyperglycaemic (DM, n = 8). Vimentin co-localised more frequently with glucagon (α-cells) than with insulin (β-cells) in the human ND group (1.43% total α-cells, 0.98% total β-cells, median; P < 0.05); these proportions were higher in T2DM than ND (median 4.53% α-, 2.53% β-cells; P < 0.05). Vimentin-positive β-cells were not apoptotic, had reduced expression of Nkx6.1 and Pdx1, and were not associated with islet amyloidosis or with bihormonal expression (insulin + glucagon). In non-human primates, vimentin-positive β-cell proportion was larger in the diabetic than the ND group (6.85 vs 0.50%, medians respectively, P < 0.05), but was similar in ND and HI groups. In conclusion, islet cell expression of vimentin indicates a degree of plasticity and dedifferentiation with potential loss of cellular identity in diabetes. This could contribute to α- and β-cell dysfunction in T2DM.


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4074-4083 ◽  
Author(s):  
Ji-Won Kim ◽  
Young-Hye You ◽  
Dong-Sik Ham ◽  
Jae-Hyoung Cho ◽  
Seung-Hyun Ko ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α) is significantly elevated in the islets of animal models of diabetes. However, the molecular mechanism has not been clarified. We investigated whether the suppression of PGC-1α expression protects against β-cell dysfunction in vivo and determined the mechanism of action of PGC-1α in β-cells. The studies were performed in glucolipotixicity-induced primary rat islets and INS-1 cells. In vitro and in vivo approaches using adenoviruses were used to evaluate the role of PGC-1α in glucolipotoxicity-associated β-cell dysfunction. The expression of PGC-1α in cultured β-cells increased gradually with glucolipotoxicity. The overexpression of PGC-1α also suppressed the expression of the insulin and β-cell E-box transcription factor (BETA2/NeuroD) genes, which was reversed by PGC-1α small interfering RNA (siRNA). BETA2/NeuroD, p300-enhanced BETA2/NeuroD, and insulin transcriptional activities were significantly suppressed by Ad-PGC-1α but were rescued by Ad-siPGC-1α. PGC-1α binding at the glucocorticoid receptor site on the BETA2/NeuroD promoter increased in the presence of PGC-1α. Ad-siPGC-1α injection through the celiac arteries of 90% pancreatectomized diabetic rats improved their glucose tolerance and maintained their fasting insulin levels. The suppression of PGC-1α expression protects the glucolipotoxicity-induced β-cell dysfunction in vivo and in vitro. A better understanding of the functions of molecules such as PGC-1α, which play key roles in intracellular fuel regulation, could herald a new era of the treatment of patients with type 2 diabetes mellitus by providing protection from glucolipotoxicity, which is an important cause of the development and progression of the disease.


2017 ◽  
Vol 16 (4) ◽  
pp. 125 ◽  
Author(s):  
Javed Ahamad ◽  
Naila Hassan ◽  
Saima Amin ◽  
Showkat R. Mir

<strong>Objective:</strong> Swertiamarin is a common secoiridoid found among the members of Gentianaceae. The present study aimed to establish the effectiveness of swertiamarin in achieving glucose homeostasis via inhibition of carbohydrate metabolizing enzymes by in-vitro and in-vivo studies. <strong>Materials and methods:</strong> Swertiamarin was obtained from dried whole plant samples of <em>Enicostemma littorale</em> Blume chromatographic fractionation over the silica gel column. Its effect on carbohydrate metabolizing enzymes viz., α-amylase and α-glucosidase were evaluated at 0.15 to 10 mg/mL in-vitro. The results were supplemented by anti-hyperglycemic studies in carbohydrate challenged mice pretreated with swertiamarin at a dose of 20 mg/kg body weight orally. <strong>Results:</strong> Swertiamarin was effective in inhibiting α-amylase and α-glucosidase with IC<em>50</em> values of 1.29±0.25 mg/mL and 0.84±0.11 mg/mL, respectively. The studies in starch and sucrose challenged mice showed that swertiamarin effectively restricted the increase in the peak blood glucose level (BGL). The increase in peak BGL was 49 mg/dL and 57 mg/dL only in the treatment groups compared to 70 mg/dL and 80 mg/dL in untreated groups after 30 min in starch and sucrose-fed mice, respectively. Acarbose (10 mg/kg b.w.) also produced significant (p&lt;0.01) blood glucose lowering response in both the models. <strong>Conclusion:</strong> Swertiamarin was effective in the achieving stricter glycemic control in carbohydrate challenged mice through the inhibition of carbohydrate metabolizing enzymes.


2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


Sign in / Sign up

Export Citation Format

Share Document