Characterization of Somatostatin Receptors Which Mediate Inhibition of Insulin Secretion in RINm5F Insulinoma Cells*

Endocrinology ◽  
1987 ◽  
Vol 121 (2) ◽  
pp. 544-552 ◽  
Author(s):  
SUSAN J. SULLIVAN ◽  
AGNES SCHONBRUNN
2018 ◽  
Vol 51 (5) ◽  
pp. 2185-2197 ◽  
Author(s):  
Lili Men ◽  
Juan Sun ◽  
Decheng Ren

Background/Aims: VCP-interacting membrane selenoprotein (VIMP), an ER resident selenoprotein, is highly expressed in β-cells, however, the role of VIMP in β-cells has not been characterized. In this study, we studied the relationship between VIMP deficiency and β-cell survival in MIN6 insulinoma cells. Methods: To determine the role of VIMP in β-cells, lentiviral VIMP shRNAs were used to knock down (KD) expression of VIMP in MIN6 cells. Cell death was quantified by propidium iodide (PI) staining followed by flow cytometric analyses using a FACS Caliber and FlowJo software. Cell apoptosis and proliferation were determined by TUNEL assay and Ki67 staining, respectively. Cell cycle was analyzed after PI staining. Results: The results show that 1) VIMP suppression induces β-cell apoptosis, which is associated with a decrease in Bcl-xL, and the β-cell apoptosis induced by VIMP suppression can be inhibited by overexpression of Bcl-xL; 2) VIMP knockdown (KD) decreases cell proliferation and G1 cell cycle arrest by accumulating p27 and decreasing E2F1; 3) VIMP KD suppresses unfolded protein response (UPR) activation by regulating the IRE1α and PERK pathways; 4) VIMP KD increases insulin secretion. Conclusion: These results suggest that VIMP may function as a novel regulator to modulate β-cell survival, proliferation, cell cycle, UPR and insulin secretion in MIN6 cells.


1993 ◽  
Vol 294 (3) ◽  
pp. 735-743 ◽  
Author(s):  
S Benjannet ◽  
N Rondeau ◽  
L Paquet ◽  
A Boudreault ◽  
C Lazure ◽  
...  

We present herein the pulse-chase analysis of the biosynthesis of the prohormone convertases PC1 and PC2 in the endocrine GH4C1 cells infected with vaccinia virus recombinants expressing these convertases. Characterization of the pulse-labelled enzymes demonstrated that pro-PC1 (88 kDa) is cleaved into PC1 (83 kDa) and pro-PC2 (75 kDa) into PC2 (68 kDa). Secretion of glycosylated and sulphated PC1 (84 kDa) occurs about 30 min after the onset of biosynthesis, whereas glycosylated and sulphated PC2 (68 kDa) is detected in the medium after between 1 and 2 h. Furthermore, in the case of pro-PC2 only, we observed that a fraction of this precursor escapes glycosylation. A small proportion (about 5%) of the intracellular glycosylated pro-PC2 (75 kDa) is sulphated, and it is this glycosylated and sulphated precursor that is cleaved into the secretable 68 kDa form of PC2. Major differences in the carbohydrate structures of PC1 and PC2 are demonstrated by the resistance of the secreted PC1 to endoglycosidase H digestion and sensitivity of the secreted PC2 to this enzyme. Inhibition of N-glycosylation with tunicamycin caused a dramatic intracellular degradation of these convertases within the endoplasmic reticulum, with the net effect of a reduction in the available activity of PC1 and PC2. These results emphasize the importance of N-glycosylation in the folding and stability of PC1 and PC2. Pulse-labelling experiments in uninfected mouse beta TC3 and rat Rin m5F insulinoma cells, which endogenously synthesize PC2, showed that, as in infected GH4C1 cells, pro-PC2 predominates intracellularly. In order to define the site of prosegment cleavage, pulse-chase analysis was performed at low temperature (15 degrees C) or after treatment of GH4C1 cells with either brefeldin A or carbonyl cyanide m-chlorophenylhydrazone. These results demonstrated that the onset of the conversions of pro-PC1 into PC1 and non-glycosylated pro-PC2 into PC2 (65 kDa) occur in a pre-Golgi compartment, presumably within the endoplasmic reticulum. In contrast, pulse labelling in the presence of Na(2)35SO4 demonstrated that the processing of glycosylated and sulphated pro-PC2 occurs within the Golgi apparatus. In order to test the possibility that zymogen processing is performed by furin, we co-expressed this convertase with either pro-PC1 or pro-PC2. The data demonstrated the inability of furin to cleave either proenzyme.


2019 ◽  
Author(s):  
Hans E. Hohmeier ◽  
Lu Zhang ◽  
Brandon Taylor ◽  
Samuel Stephens ◽  
Peter McNamara ◽  
...  

AbstractA key event in the development of both major forms of diabetes is the loss of functional pancreatic islet β-cell mass. Strategies aimed at enhancing β-cell regeneration have long been pursued, but methods for reliably inducing human β-cell proliferation with full retention of key functions such as glucose-stimulated insulin secretion (GSIS) are still very limited. We have previously reported that overexpression of the homeobox transcription factor Nkx6.1 stimulates β-cell proliferation, while also enhancing GSIS and providing protection against β-cell cytotoxicity through induction of the VGF prohormone. We developed an Nkx6.1 pathway screen by stably transfecting 832/13 rat insulinoma cells with a VGF promoter-luciferase reporter construct, using the resultant cell line to screen a 630,000 compound chemical library. We isolated three compounds with consistent effects to stimulate human islet cell proliferation. Further studies of the most potent of these compounds, GNF-9228, revealed that it selectively activates human β-cell relative to α-cell proliferation and has no effect on δ-cell replication. In addition, pre-treatment, but not short term exposure of human islets to GNF-9228 enhances GSIS. GNF-9228 also protects 832/13 insulinoma cells against ER stress- and inflammatory cytokine-induced cytotoxicity. In contrast to recently emergent Dyrk1a inhibitors that stimulate human islet cell proliferation, GNF-9228 does not activate NFAT translocation. These studies have led to identification of a small molecule with pleiotropic positive effects on islet biology, including stimulation of human β-cell proliferation and insulin secretion, and protection against multiple agents of cytotoxic stress.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0224344 ◽  
Author(s):  
Hans E. Hohmeier ◽  
Lu Zhang ◽  
Brandon Taylor ◽  
Samuel Stephens ◽  
Danhong Lu ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 685 ◽  
Author(s):  
Md. Shahidul Islam

Insulin secretion from the β-cells of the islets of Langerhans is triggered mainly by nutrients such as glucose, and incretin hormones such as glucagon-like peptide-1 (GLP-1). The mechanisms of the stimulus-secretion coupling involve the participation of the key enzymes that metabolize the nutrients, and numerous ion channels that mediate the electrical activity. Several members of the transient receptor potential (TRP) channels participate in the processes that mediate the electrical activities and Ca2+ oscillations in these cells. Human β-cells express TRPC1, TRPM2, TRPM3, TRPM4, TRPM7, TRPP1, TRPML1, and TRPML3 channels. Some of these channels have been reported to mediate background depolarizing currents, store-operated Ca2+ entry (SOCE), electrical activity, Ca2+ oscillations, gene transcription, cell-death, and insulin secretion in response to stimulation by glucose and GLP1. Different channels of the TRP family are regulated by one or more of the following mechanisms: activation of G protein-coupled receptors, the filling state of the endoplasmic reticulum Ca2+ store, heat, oxidative stress, or some second messengers. This review briefly compiles our current knowledge about the molecular mechanisms of regulations, and functions of the TRP channels in the β-cells, the α-cells, and some insulinoma cell lines.


2016 ◽  
Vol 473 (12) ◽  
pp. 1791-1803 ◽  
Author(s):  
Seo-Yun Yang ◽  
Jae-Jin Lee ◽  
Jin-Hee Lee ◽  
Kyungeun Lee ◽  
Seung Hoon Oh ◽  
...  

Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document