Chlorogenic acid and β-glucan from highland barley grain ameliorate β cell dysfunction via inhibiting apoptosis and improving cell proliferation

2021 ◽  
Author(s):  
Zehua Liu ◽  
Bo Li

Recent studies support the view that highland barley as whole grain diet showed anti-hyperglycemic effects, while little information is available about the active compounds that could ameliorate pancreatic β cells...

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Kazuki Orime ◽  
Jun Shirakawa ◽  
Yu Togashi ◽  
Kazuki Tajima ◽  
Hideaki Inoue ◽  
...  

Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.


2019 ◽  
Vol 20 (24) ◽  
pp. 6110 ◽  
Author(s):  
Christiane Klec ◽  
Gabriela Ziomek ◽  
Martin Pichler ◽  
Roland Malli ◽  
Wolfgang F. Graier

Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


2008 ◽  
Vol 197 (3) ◽  
pp. 543-552 ◽  
Author(s):  
Hannah J Welters ◽  
Alina Oknianska ◽  
Kai S Erdmann ◽  
Gerhart U Ryffel ◽  
Noel G Morgan

In pancreatic β-cells, increased expression of the MODY5 gene product, HNF1β, leads to enhanced rates of apoptosis and altered regulation of the cell cycle, suggesting that control of HNF1β expression may be important for the control of β-cell proliferation and viability. It is unclear how these effects of HNF1β are mediated, but previously we have identified a protein tyrosine phosphatase, (PTP)-BL, as an HNF1β-regulated protein in β-cells and have now studied the role of this protein in INS-1 β-cells. Stably transfected cells were generated, which express either wild-type (WT) or a phosphatase-deficient mutant (PTP-BL-CS) of PTP-BL conditionally under the control of a tetracycline-regulated promoter. Enhanced expression of WT PTP-BL inhibited INS-1 cell growth dose dependently, but this effect was not observed when PTP-BL-CS was expressed. Neither construct altered the rate of apoptosis. PTP-BL has been reported to interact with components of the Wnt signalling pathway, and we observed that addition of exogenous Wnt3a resulted in an increase in cell proliferation and a rise in β-catenin levels, consistent with the operation of this pathway in INS-1 cells. Up-regulation of WT PTP-BL antagonised these responses but PTP-BL-CS failed to inhibit Wnt3a-induced proliferation. The rise in β-catenin caused by Wnt3a was also suppressed by over-expression of HNF1β, suggesting that HNF1β may interact with the Wnt signalling pathway via an increase in PTP-BL levels. We conclude that PTP-BL plays an important role in the regulation of cell cycle progression in pancreatic β-cells, and that it interacts functionally with components of the Wnt signalling pathway.


2017 ◽  
Vol 313 (3) ◽  
pp. E367-E380 ◽  
Author(s):  
Kazuki Tajima ◽  
Jun Shirakawa ◽  
Tomoko Okuyama ◽  
Mayu Kyohara ◽  
Shunsuke Yamazaki ◽  
...  

Metformin has been widely used for the treatment of type 2 diabetes. However, the effect of metformin on pancreatic β-cells remains controversial. In this study, we investigated the impacts of treatment with metformin on pancreatic β-cells in a mouse model fed a high-fat diet (HFD), which triggers adaptive β-cell replication. An 8-wk treatment with metformin improved insulin resistance and suppressed the compensatory β-cell hyperplasia induced by HFD-feeding. In contrast, the increment in β-cell mass arising from 60 wk of HFD feeding was similar in mice treated with and those treated without metformin. Interestingly, metformin suppressed β-cell proliferation induced by 1 wk of HFD feeding without any changes in insulin resistance. Metformin directly suppressed glucose-induced β-cell proliferation in islets and INS-1 cells in accordance with a reduction in mammalian target of rapamycin phosphorylation. Taken together, metformin suppressed HFD-induced β-cell proliferation independent of the improvement of insulin resistance, partly via direct actions.


2016 ◽  
Vol 229 (2) ◽  
pp. 73-83 ◽  
Author(s):  
Binbin Guan ◽  
Wenyi Li ◽  
Fengying Li ◽  
Yun Xie ◽  
Qicheng Ni ◽  
...  

The cellular and molecular mechanisms of glucose-stimulated β-cell proliferation are poorly understood. Recently, secreted frizzled-related protein 5 (encoded by Sfrp5; a Wnt signaling inhibitor) has been demonstrated to be involved in β-cell proliferation in obesity. A previous study demonstrated that glucose enhanced Wnt signaling to promote cell proliferation. We hypothesized that inhibition of SFRP5 contributes to glucose-stimulated β-cell proliferation. In this study, we found that the Sfrp5 level was significantly reduced in high glucose-treated INS-1 cells, primary rat β-cells, and islets isolated from glucose-infused rats. Overexpression of SFRP5 diminished glucose-stimulated proliferation in both INS-1 cells and primary β-cells, with a concomitant inhibition of the Wnt signaling pathway and decreased cyclin D2 expression. In addition, we showed that glucose-induced Sfrp5 suppression was modulated by the PI3K/AKT pathway. Therefore, we conclude that glucose inhibits Sfrp5 expression via the PI3K/AKT pathway and hence promotes rat pancreatic β-cell proliferation.


2019 ◽  
Vol 20 (18) ◽  
pp. 4424
Author(s):  
Jung-Hwa Han ◽  
Suji Kim ◽  
Suji Kim ◽  
Heejung Lee ◽  
So-Young Park ◽  
...  

Hyperglycemia is the major characteristic of diabetes mellitus, and a chronically high glucose (HG) level causes β-cell glucolipotoxicity, which is characterized by lipid accumulation, impaired β-cell function, and apoptosis. TXNIP (Thioredoxin-interacting protein) is a key mediator of diabetic β-cell apoptosis and dysfunction in diabetes, and thus, its regulation represents a therapeutic target. Recent studies have reported that p90RSK is implicated in the pathogenesis of diabetic cardiomyopathy and nephropathy. In this study, we used FMK (a p90RSK inhibitor) to determine whether inhibition of p90RSK protects β-cells from chronic HG-induced TXNIP expression and to investigate the molecular mechanisms underlying the effect of FMK on its expression. In INS-1 pancreatic β-cells, HG-induced β-cell dysfunction, apoptosis, and ROS generation were significantly diminished by FMK. In contrast BI-D1870 (another p90RSK inhibitor) did not attenuate HG-induced TXNIP promoter activity or TXNIP expression. In addition, HG-induced nuclear translocation of ChREBP and its transcriptional target molecules were found to be regulated by FMK. These results demonstrate that HG-induced pancreatic β-cell dysfunction resulting in HG conditions is associated with TXNIP expression, and that FMK is responsible for HG-stimulated TXNIP gene expression by inactivating the regulation of ChREBP in pancreatic β-cells. Taken together, these findings suggest FMK may protect against HG-induced β-cell dysfunction and TXNIP expression by ChREBP regulation in pancreatic β-cells, and that FMK is a potential therapeutic reagent for the drug development of diabetes and its complications.


Sign in / Sign up

Export Citation Format

Share Document