scholarly journals The Coexistence of a Novel Inactivating Mutant Thyrotropin Receptor Allele with Two Thyroid Peroxidase Mutations: A Genotype-Phenotype Correlation

2011 ◽  
Vol 96 (6) ◽  
pp. E1001-E1006 ◽  
Author(s):  
Chutintorn Sriphrapradang ◽  
Yardena Tenenbaum-Rakover ◽  
Mia Weiss ◽  
Marla S. Barkoff ◽  
Osnat Admoni ◽  
...  

Context: TSH receptor (TSHR) and thyroid peroxidase (TPO) gene mutations occur independently. This is the first report of their coexistence in the same individuals. Objectives: The objective of the study was to evaluate the genotype-phenotype correlations when mutations in both genes are present alone or together in the same individual. Patients and Methods: Thirty subjects from an extended Arab kindred underwent clinical investigation and molecular studies of the mutant TSHRs. Results: A novel mutant TSHR was identified, involving four nucleotides at three sites on the same allele, c.267G>T (L89L), c.269/270AG>CT (Q90P), and c.790C>T (P264S). In addition, two known TPO gene mutations, G493S and R540X, were identified. Thirteen heterozygotes for the mutant TSHR allele had mild hyperthyrotropinemia. In nine of theses, the coexistence of a TPO mutation in one allele did not magnify the hyperthyrotropinemia. Homozygotes for the mutant TSHR and a compound heterozygote for the TPO mutations presented frank hypothyroidism. In vitro studies showed increasing loss of function for Q90P less than P264S less than Q90P/P264S TSHR mutants, the latter being that expressed in the subjects under investigation. The two interchangeably used WT TSHR vectors, L87 and V87, although functionally identical, differed in structure and function in the presence of the Q90P mutation. Conclusions: TSHR and TPO gene mutations were identified alone and together in individuals of a consanguineous kindred. Homozygotes for the TSHR and a compound heterozygote for the TPO mutations were hypothyroid. The mild hyperthyrotropinemia of heterozygotes for the mutant TSHR allele was not aggravated by the coexistence of a TPO defect in one allele.

Author(s):  
Paolo Zanoni ◽  
Katharina Steindl ◽  
Deepanwita Sengupta ◽  
Pascal Joset ◽  
Angela Bahr ◽  
...  

Abstract Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. Conclusion NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


2005 ◽  
Vol 25 (23) ◽  
pp. 10533-10542 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Christian Schmedt ◽  
Masato Okada ◽  
Alexander Tarakhovsky

ABSTRACT Regulation of Src family kinase (SFK) activity is indispensable for a functional immune system and embryogenesis. The activity of SFKs is inhibited by the presence of the carboxy-terminal Src kinase (Csk) at the cell membrane. Thus, recruitment of cytosolic Csk to the membrane-associated SFKs is crucial for its regulatory function. Previous studies utilizing in vitro and transgenic models suggested that the Csk-binding protein (Cbp), also known as phosphoprotein associated with glycosphingolipid microdomains (PAG), is the membrane adaptor for Csk. However, loss-of-function genetic evidence to support this notion was lacking. Herein, we demonstrate that the targeted disruption of the cbp gene in mice has no effect on embryogenesis, thymic development, or T-cell functions in vivo. Moreover, recruitment of Csk to the specialized membrane compartment of “lipid rafts” is not impaired by Cbp deficiency. Our results indicate that Cbp is dispensable for the recruitment of Csk to the membrane and that another Csk adaptor, yet to be discovered, compensates for the loss of Cbp.


1973 ◽  
Vol 242 (121) ◽  
pp. 253-254 ◽  
Author(s):  
H. STEBBINGS ◽  
N. A. RATCLIFFE

1977 ◽  
Vol 168 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J C Ramsey ◽  
W J Steele

Free loosely bound and tightly bound polyribosomes were separated from rat liver homogenate by salt extraction followed by differential centrifugation, and several of their structural and functional properties were compared to resolve the existence of loosely bound polyribosomes and verify the specificity of the separation. The free and loosely bound polyribosomes have similar sedimentation profiles and polyribosome contents, their subunit proteins have similar electrophoretic patterns and their products of protein synthesis in vitro show a close correspondence in size and amounts synthesized. In contrast, the tightly bound polyribosomes have different properties from those of the free and loosely bound polyribosomes; their average size is significantly smaller; their polyribosome content is higher; their 60 S-subunit proteins lack two components and contain four or more components not found elsewhere; their products of protein synthesis in vitro differ in size and amounts synthesized. These observations show that rat liver membranes entrap a large fraction of the free polyribosomes at low salt concentrations and that these polyribosomes are similar to those of the free-polyribosome fraction and are different from those of the tightly bound polyribosome fraction in size, structure and function.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


2020 ◽  
Author(s):  
Tianming Yao ◽  
Ming-Hsu Chen ◽  
Stephen R. Lindemann

ABSTRACTDietary fibers are major substrates for the colonic microbiota, but the structural specificity of these fibers for the diversity, structure, and function of gut microbial communities are poorly understood. Here, we employed an in vitro sequential batch fecal culture approach to determine: 1) whether the chemical complexity of a carbohydrate structure influences its ability to maintain microbial diversity in the face of high dilution pressure and 2) whether substrate structuring or obligate microbe-microbe metabolic interactions (e.g. exchange of amino acids or vitamins) exert more influence on maintained diversity. Sorghum arabinoxylan (SAX, complex polysaccharide), inulin (low-complexity oligosaccharide) and their corresponding monosaccharide controls were selected as model carbohydrates. Our results demonstrate that complex carbohydrates stably sustain diverse microbial consortia. Further, very similar final consortia were enriched on SAX from the same individual’s fecal microbiota across a one-month interval, suggesting that polysaccharide structure is more influential than stochastic alterations in microbiome composition in governing the outcomes of sequential batch cultivation experiments. SAX-consuming consortia were anchored by Bacteroides ovatus and retained diverse consortia of >12 OTUs; whereas final inulin-consuming consortia were dominated either by Klebsiella pneumoniae or Bifidobacterium sp. and Escherichia coli. Furthermore, auxotrophic interactions were less influential in structuring microbial consortia consuming SAX than the less-complex inulin. These data suggest that carbohydrate structural complexity affords independent niches that structure fermenting microbial consortia, whereas other metabolic interactions govern the composition of communities fermenting simpler carbohydrates.IMPORTANCEThe mechanisms by which gut microorganisms compete for and cooperate on human-indigestible carbohydrates of varying structural complexity remain unclear. Gaps in this understanding make it challenging to predict the effect of a particular dietary fiber’s structure on the diversity, composition, or function of gut microbiomes, especially with inter-individual variability in diets and microbiomes. Here, we demonstrate that carbohydrate structure governs the diversity of gut microbiota under high dilution pressure, suggesting that such structures may support microbial diversity in vivo. Further, we also demonstrate that carbohydrate polymers are not equivalent in the strength by which they influence community structure and function, and that metabolic interactions among members arising due to auxotrophy exert significant influence on the outcomes of these competitions for simpler polymers. Collectively, these data suggest that large, complex dietary fiber polysaccharides structure the human gut ecosystem in ways that smaller and simpler ones may not.


2020 ◽  
Vol 34 (1) ◽  
pp. 104-114 ◽  
Author(s):  
Guosong Xin ◽  
Miao Yu ◽  
Yang Hu ◽  
Shiyong Gao ◽  
Zheng Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document